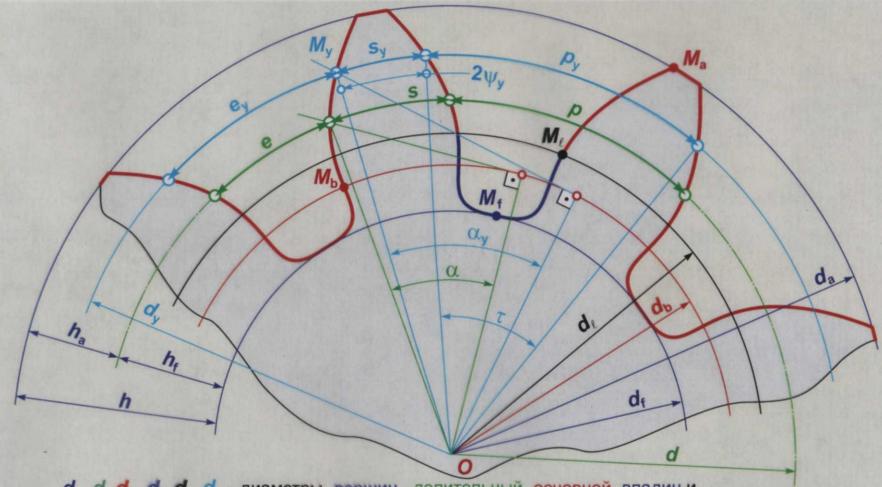

СВОЙСТВА ВНЕШНЕГО ЭВОЛЬВЕНТНОГО ЗАЦЕПЛЕНИЯ

 N_1 , N_2 , N_1N_2 - предельные точки и линия зацепления; $P_{\rm w}$ - полюс зацепления (МЦВ); $d_{\rm w1}$, $d_{\rm w2}$ - начальные окружности, $\alpha_{\rm w}$, $\alpha_{\rm w1}$, $\alpha_{\rm w2}$ - угол зацепления (угол давления) и профильные углы эвольвент в точках на $d_{\rm w1}$ и $d_{\rm w2}$.

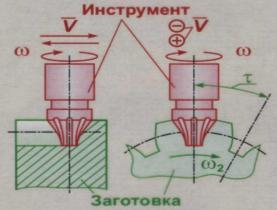

1. Эвольвенты контактируют в пределах предельной линии зацепления N_1N_2 (B_1 и B_2 - имеют общие производящие); за ее пределами они пересекаются (B_3 - имеет разные производящие). Условие отсутствия интерференции

$$P_{\mathbf{w}}N_2 > P_{\mathbf{w}}B_{\mathbf{i}} < P_{\mathbf{w}}N_1$$
.

- 2.Эвольвентное зацепление обеспечивает $i = \frac{\omega_1}{\omega_2} = -\frac{d_{w2}}{d_{w1}} = \text{const}$ (полюс фиксирован на межцентровой линии).
- 3. Кинематика эвольвентного зацепления нечувствительна к колебаниям межцентрового расстояния

$$i = \frac{\omega_1}{\omega_2} = -\frac{d_{b2}}{d_{b1}} = \text{const}$$

ЭЛЕМЕНТЫ ЭВОЛЬВЕНТНОГО ЦИЛИНДРИЧЕСКОГО ПРЯМОЗУБОГО ЗУБЧАТОГО КОЛЕСА

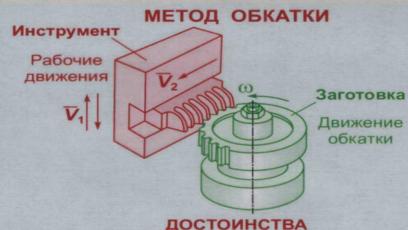

 d_a , d, d_b , d_f , d_g , - диаметры вершин, делительный, основной, впадин и окружностей граничных точек и произвольного радиуса соответственно.

 M_b , M_ℓ , $M_a M_\ell$, $M_\ell M_f$ - предельная и граничная точки, главный профиль зуба (эвольвента) и переходная кривая соответственно.

 α , α_{y} - углы, численно равные углам профиля эвольвенты на делительной и произвольного радиуса окружностях соответственно.

МЕТОДЫ НАРЕЗАНИЯ ЗУБЧАТЫХ КОЛЕС

МЕТОД КОПИРОВАНИЯ



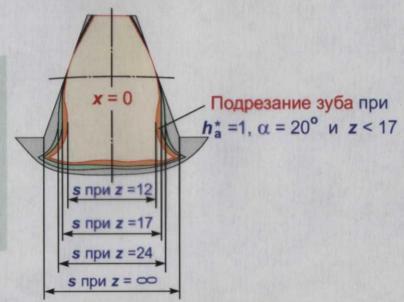
НЕДОСТАТКИ

- 1. Огромная наменклатура режущего инструмента (равна сочетанию числа зубьев и модуля).
- 2. Принципиальная неточность нарезания зубьев (использование универсального комплекта фрез).
 - 3. Нетехнологичногсть инструмента, малая производительность.

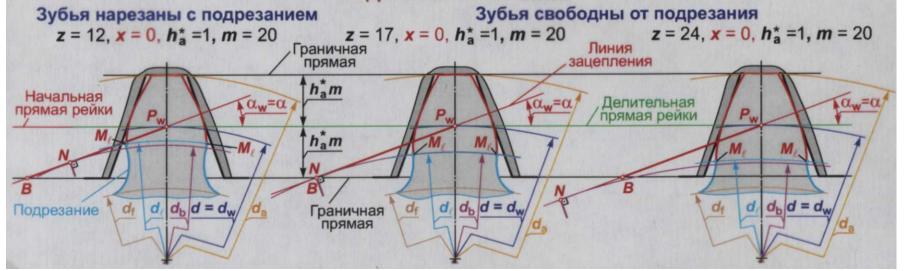
достоинства

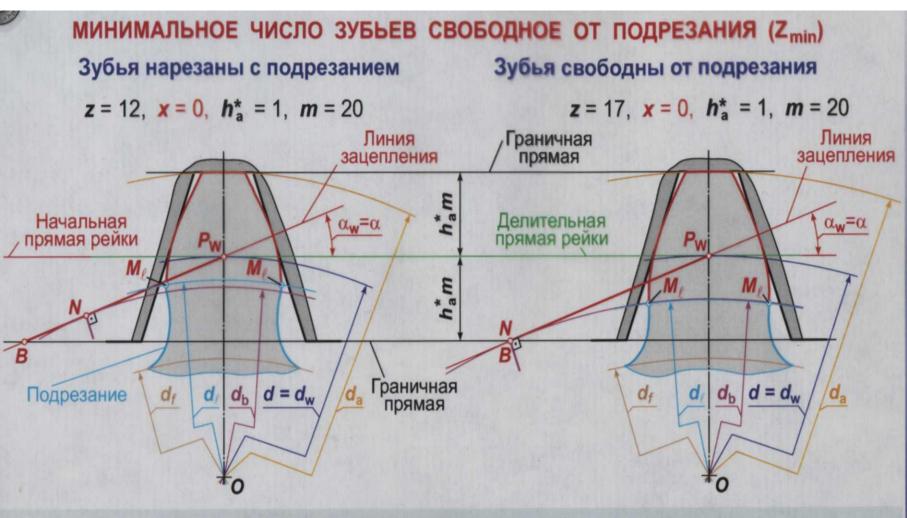
Возможность нарезания зубьев на универсальном фрезерном оборудовании.

- 1. Принципиальная точность нарезания зубьев.
- 2. Резкое сокращение наменклатуры и технологичность инструмента.
- 3. Высокая производительность.

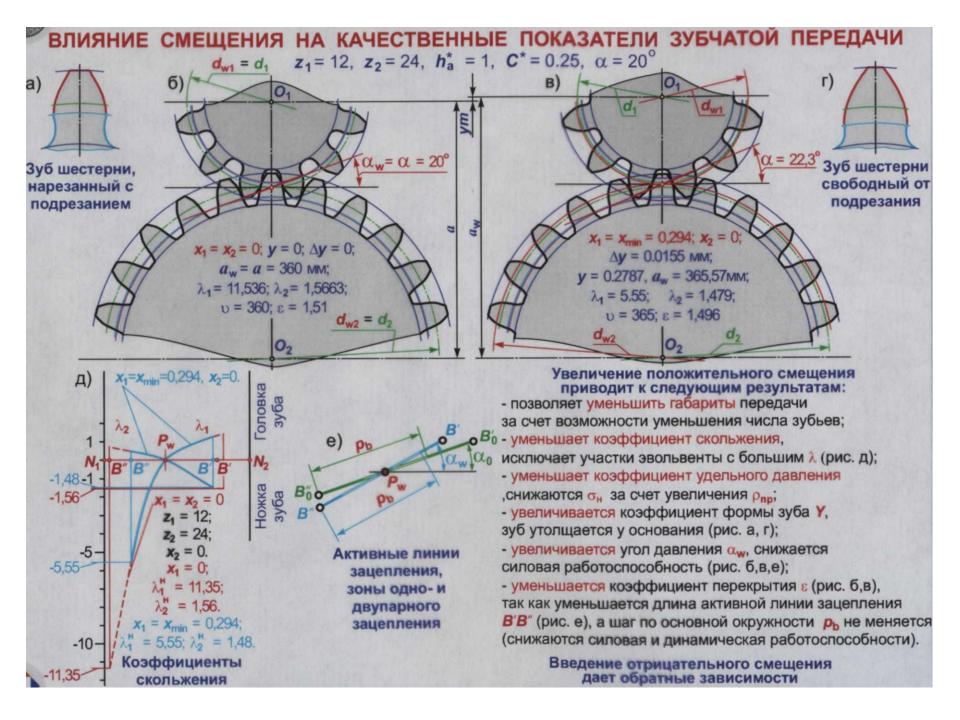

НЕДОСТАТКИ

Требуется специальное зубонарезное оборудование.

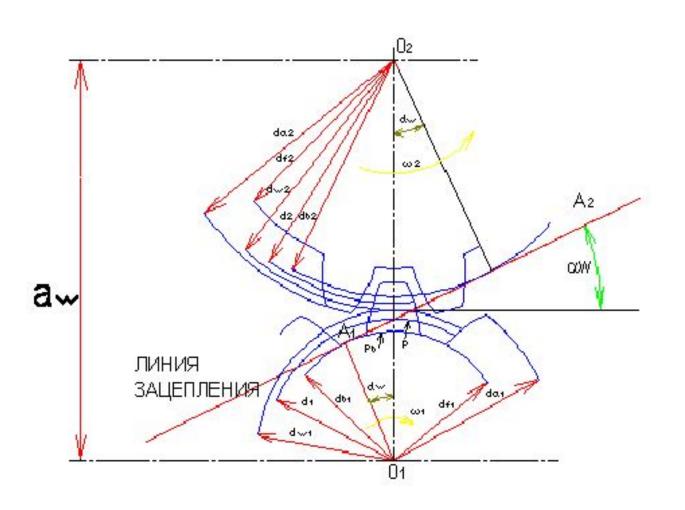

ПРОФИЛИ ЗУБЬЕВ КОЛЕС С РАЗЛИЧНЫМ ЧИСЛОМ ЗУБЬЕВ

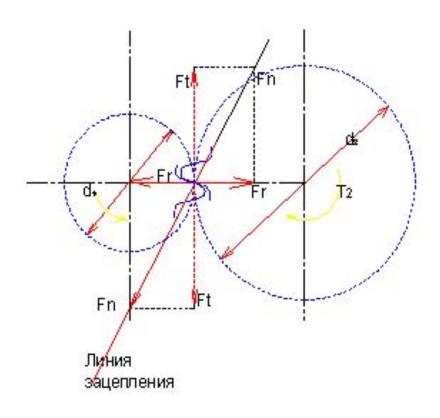

При взаимодействии эвольвент за пределами предельной линии зацепления они пересекаются. В этом случае у заготовки режущим инструментом срезается часть эвольвенты ниже точки M_{ℓ} и получается зуб, нарезанный с подрезанием. Подрезание недопустимо:

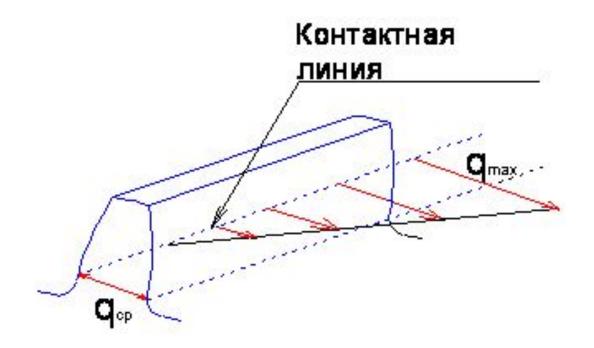
- срезается часть эвольвенты и нарушается кинематика зацепления, - ослабляется зуб в наиболее опасном сечении.



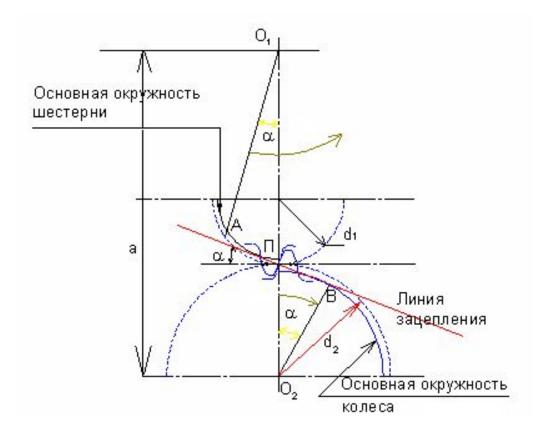
ПОДРЕЗАНИЕ ЗУБЬЕВ




Граничное условие, обеспечивающее отсутствие подрезания зубьев инструментом $P_{w}B = P_{w}N$.


Геометрия прямозубой цилиндрической передачи.

Силы действующие в зацеплении.



Расчетная нагрузка

Расчет на контактную прочность формула Герца.

$$\sigma_{H} = \sqrt{\frac{q}{\rho_{np}} * \frac{E}{2\pi(1-\mu^2)}} \le [\sigma_H]$$

$$\sigma_H = \frac{340}{au} * \sqrt{\frac{(U+1)^3}{b}} * K_H T_2 \le \left[\sigma_H\right]$$

$$a = (U+1)\sqrt[3]{\left(\frac{340}{U[\sigma_H]}\right)^2} \frac{K_H T_2}{\psi_{ba}}$$

От чего зависит Кнв

Коэффициент Кнв (или Кғв) зависит:

- -От жесткости валов (особенно вала шестерни).
- -От характера расположения шестерни относительно опор.
- -От коэффициента безразмерной ширины $\psi_{bd} = \frac{b}{d_1}$
- -От твердостей рабочих поверхностей зубьев.

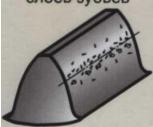
От чего зависит Кну

Коэффициент Кну (или Кгу) зависит:

- -От степени точности зацепления,
- -От величины окружной скорости в зацеплении,
- -От твердости рабочих поверхностей зубьев.

Поломка зубьев

Излом зуба по сечению у основания может носить усталостный характер или являться следствием перегрузок. При циклическом нагружении микротрещины у основания зуба разрастаются, что может привести к его разрушению. Приоритетное значение имеет оптимальное сочетание коэффициентов формы зуба У и перекрытия €. Необходимо учитывать, что увеличение коэффициента смещения х увеличивает У, но уменьшает €


Абразивный износ

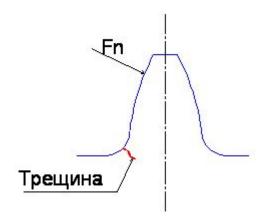
При работе открытой зубчатой передачи превалирует абразивный износ и приоритетное значение имеют коэффициенты скольжения λ_1 и λ_2 . Для обеспечения равнопрочности по износу желательно при термообработке обеспечить

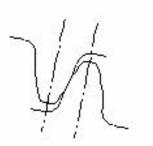
$$\frac{\lambda_1}{\lambda_2} = \frac{H_{b1}}{H_{b2}}$$

Выкрашивание поверхностных слоев зубьев

При работе закрытой зубчатой передачи в условиях хорошей смазки при циклическом нагружении у полюсной линии разрастаются микротрещины, что приводит к образованию оспинок, переходящих в раковины. На первое место выступают угол давления α_w и коэффициент удельного давления ρ .

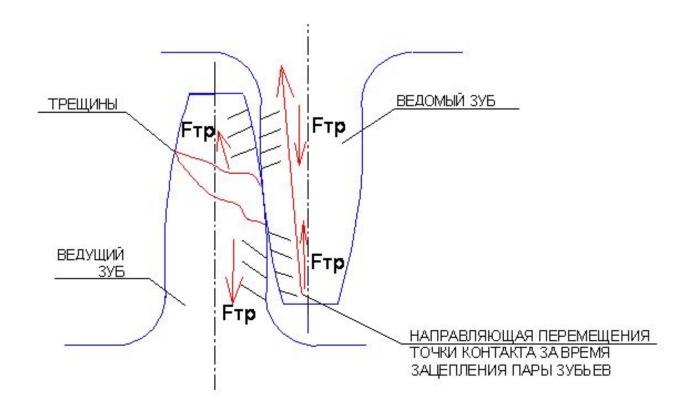
Заедание




При высокой удельной нагрузке происходит разрыв масляной пленки, нагрев и схватывание сопряженных поверхностей с образованием микротрещин и следов задира в направлении скольжения зубьев

Виды разрушения зубчатых колес

Поломка зубьев


Износ зубьев

проскальзывание

Выкрашивание рабочих поверхностей зубьев

