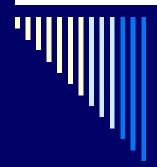


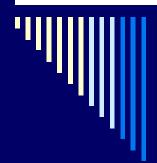
Структурная диагностика

Методика проведения

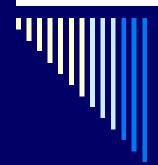


Рассмотрение информации

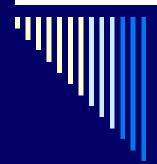
Информация


В статике:
Тип оргструктуры
Распределение
прав и
обязанностей

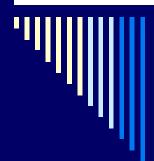
В динамике:
Определение
эффективности
достижения
конечных
результатов
деятельности


Предмет диагностики

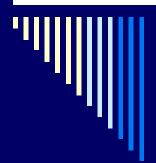
проведении структурной При диагностики диагностируются подразделения, должностные лица; изучаются ИХ взаимодействия между собой, способы принятия и выполнения решений, их деятельность по обеспечению работоспособности предприятия


Этапы проведения диагностики

- □ 1. Представление структуры предприятия в виде графа
- 2. Построение матрицы смежности
- 3. Определение ранга каждого элемента
- □ 4. Проверка связанности структуры

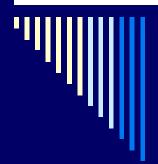

Этапы проведения диагностики

- □ 5. Исследование на структурную избыточность
- □ 6. Исследование структуры на неравномерность распределения связей
- □ 7. Исследование системы на структурную компактность
- □ 8. Определение степени центральности системы


Описание примера

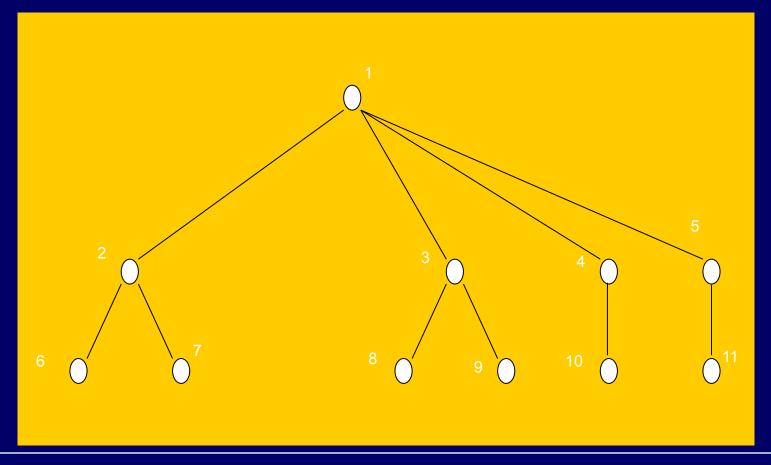
- □ Объектом исследования является ООО «ТИЖ».
- □ ООО «ТИЖ» создано в 2004 г.
 Численность работников на настоящий момент составляет 314 человек

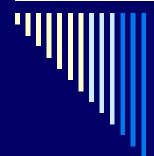
Продолжение описания примера


- □ ООО «ТИЖ» организация с диверсифицированной структурой.
- □ Основные направления деятельности :
- □ Производство изделий из полимернокомпозитных материалов (ПКМ);
- **НИОКР**
- □ Проектирование и изготовление оснастки и оборудования для производственных изделий из ПКМ
- Коммерческая деятельность;
- Иные виды деятельности, не запрещенной законодательством.

Продолжение описания примера


География деятельности РГ «Портрет»: г.Пермь и Пермский край, Свердловская и Челябинская область, Краснодарский край, Дагестан, Узбекистан, Туркмения, Азербайджан, Индия, Сирия. Среди клиентов такие крупные компании, как ОАО «ЛУКОЙЛ», ООО «Пермская финансово-производственная группа», ООО «Межрегионгаз», ОАО «Метафракс», ООО «ПермТотиНефть» и другие.




Представление структуры предприятия в виде графа

```
G=\{X,U\},
где
X – множество вершин графа (IXI=n),
соответствующее множеству
структурных элементов.
U – множество рёбер(IUI = m),
соответствующее множеству связей
между структурными элементами
предприятия
```


Структурный граф предприятия, вида *G={X,U}*,


Обозначение цифр

- 1– директор предприятия
- 2 заместитель директора по производству
- 3 заместитель директора по логистике
- □ 4 главный технолог
- □ 5 главный бухгалтер
- □ 6 цех производства ПКМ
- 7 цех производства оборудования для инжиниринговых проектов
- □ 8 отдел МТС и кооперации
- □ 9 отдел маркетинга и сбыта
- 10 технологический отдел
- □ 11 бухгалтерия

Построение матрицы смежности для описания графа

- □ Матрица имеет ви∂ A = I aij I,
- □ где *аіј -* элемент матрицы смежности, определяемые следующим образом
- □ aij = {1 при наличии связи между элементами і и ј
- □ 0 при отсутствии связи}
- □ i столбец, ј строка

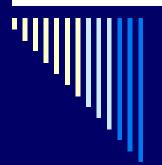
Матрица смежности

Где Рі =

ri - ранг каждого элемента

	1	2	3	4	5	6	7	8	9	10	11	pi	pi2	ri
1	1	1	1	1								4	16	0,2
2	1					1	1					3	9	0,15
3	1							1	1			3	9	0,15
4	1									1		2	4	0,16
5	1										1	2	4	0,16
6		1										1	1	0,05
7		1										1	1	0,05
8			1									1	1	0,05
9			1									1	1	0,05
10				1								1	1	0,05
11					1							1	1	0,05

Определение ранга каждого элемента


$$r_{i} = \frac{\sum_{j=1}^{n} a_{ij}}{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}}$$

$$\square$$
 где $\displaystyle \sum_{j=1}^n lpha_{iar{j}}$

сумма по строке;

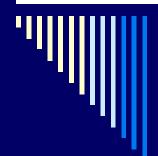
$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$$

сумма по столбцу

Определение ранга каждого элемента по матрице смежности

Чем выше ранг элемента, тем более сильно он связан с другими элементами и тем более тяжёлыми будут последствия при потере качества его функционирования

 □ В нашем случае наиболее высокий ранг (0,2) имеет первый элемент структуры (директор).

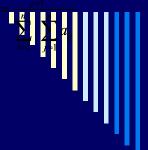


Исследование структуры на неравномерность распределения

связей Е

$$E = \sqrt{\sum_{i=1}^{n} \rho_{i}^{2} - \frac{4m^{2}}{n}}$$

□ Для нашего случая =3,41


Расчёт Е отн

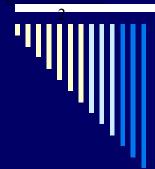
□ Для сравнения
 различных структур
 по неравномерности
 связей используют
 относительную
 величину, Е отн

$$E_{\hat{i} \, \hat{o} \, \hat{i}} = \frac{E}{E_{\text{max}}}$$

□ где **Emax** — максимальное значение неравномерности связей, которое достигается в системе, имеющей максимально возможное число вершин, имеющих одну связь.

Проверка связанности структуры

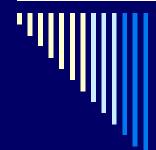
- Для связанных структур (не имеющих разрывов и висячих элементов) должно выполняться условие:
- $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \ge n 1$
- □ Правая часть неравенст ва определяет мини мально необходимое число связей в структу ре графа, содержащего п вершин
- □ Для нашего случая n = 11 и условие ½ * 20 = 11-1 выполняется, т.е. структура является связной.


Исследование на структурную избыточность

 Структурная избыточность R отражает превышение общего числа связей над минимально необходимым.

$$R = \frac{m}{n-1} - 1$$

 □ Где m – число рёбер графа (1/2 количества связей в матрице смежности), n – количество вершин структуры


- □ При минимальной избыточ ности R стремится к нулю; чем больше R, тем выше уровень избыточности.
- □ R>0, система имеет избыточность
- □ R = 0, система обладает минимальной избыточностью
- Для нашего предприятия R
 = ½ * 20 * 1/(11-1) − 1 = 0,
 т.е. структура имеет
 минимальную избыточ
 ность, а следовательно,
 недостаточно надёжна.

Величину **Етах**определяют по формуле:

$$E_{\text{max}} = \sqrt{\frac{1}{4} \cdot (x^2 - 2y - 3x)^2 - 1 + 2y(y+1) + n(n-1) - \frac{4m^2}{n}}$$

- □ где y=m-n
- Формула эмпирическая
- Величина **Е отн** для раз личных типов структур изменяется от 0 до 1. единица означает равно мерное распределение связей.

(построение матрицы смежности)

	1	2	3	4	5	6	7	8	9	10	11	Σ
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												

Исследование системы на структурную компактность Q

- Значение **Q**, отражает общую структурную близость элементов между собой:
- $Q = \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}, i \neq j$
- □ Где d ij расстояние от элемента I до элемента j

- □ Для нашего случая
- □ Q=288

Количественная оценка структурной компактности **Qотн**

$$Q_{\hat{i} \, \hat{o} \, \hat{i}} = \frac{Q}{Q_{\min}} - 1$$

- □ где:
- □ Qmin=n(n-1) минимальное значение компактности для структуры типа «полный граф» (каждый элемент соединен с каждым).

- Для нашей структуры
- □ Qmin = 11*(11-1)=110.
- □ Тогда
- □ Qотн = 288/110 − 1 = 1,62

С этой точки зрения структура имеет надежность среднего уровня

- Структурная компактность может быть исследована с помощью другой характеристики диаметра структуры: d=max dij,
- равным максимальному значению расстояния dij в матрице расстояний..
- Чем выше **Q отн** и **d**, тем выше средние издержки при обмене информацией между элементами структуры (подразделе ниями предприятия).
- Максимальную надеж ность имеет граф, для которого **Qотн=0, а d=1**.

- □ Для нашей структуры d = 4
 - С этой точки зрения структура имеет надежность среднего уровня
 - □Значение Qотн для нашей структуры превышает такой же показатель для полного графа, что подтверждает расчеты, характеризу ющие недостаточно высокую надёжность организационной структуры.

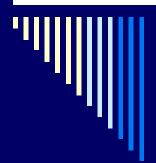
Определение степени центральности системы

 Для характеристики степени централизации систем используется показатель центральности структурного элемента.

$$Z_{i} = \frac{Q}{2 \cdot \sum_{j=1}^{n} d_{ij}}$$

В нашем случае наиболее центральным является первый элемент (директор), для которого =16=min, то есть он обладает максимальным коэффициентом центральности.

Индекс центральности


□ Степень
 центральности в
 структуре в целом
 была
 охарактеризована
 индексом
 центральности:

$$\delta = \frac{(n-1)(2 \cdot Z_{\text{max}} - n)}{(n-2) \cdot Z_{\text{max}}}$$

□ В нашем случае

$$\delta = \frac{(11-1)(2*9-11)}{(11-2)*9}$$

 $\Box = 0.87$

Диапазон степени центральности

Значение степени центральности находится в диапазоне 0≤δ≤1, при этом для структуры с равномерным распределением связей δ стремится к нулю, для структур, имеющих максимальную степень централизации, δ стремится к единице.

Для нашего предприятия высокое значение степени центральности говорит о том, что центральный элемент (директор) должен обладать высокой пропускной способностью по приему и переработке информации, т.к. через него устанавливается наибольшее число связей. Следовательно отказ этого элемента структуры может привести к прекращению функционирования

пример

 □ Так, например, во время болезни генерального директора сорвалось заключение двух крупных контрактов. Недостаточное делегирование полномочий приводит к тому, что надежность функционирования структуры снижается.