Information and Communication Technologies (ICT)

The role of ICT in key sectors of the development of society. Standards in the field of ICT

Aigerim Kairatovna Aitim Senior-Lecturer of IS department Master of Technical Sciences E-mail: a.aitim@iitu.edu.kz

Students are forbidden to:

- submit any tasks after the deadline.
- cheat. Plagiarized papers shall not be graded;
- be late for classes;
- retake any tests, unless there is a valid reason for missing them;
- chew gum in class
- Starting meeting in Teams channel without teacher permission

LECTURES

- **1** The role of ICTs in key sectors of society. ICT Standards.
- 2 Introduction into computer systems. Architecture of computer systems.
- 3 Software. OS.
- 4 Human-computer interaction.
- 5 Database systems.
- 6 Data analysis. Data management.
- 7 Networks and Telecommunications.
- 8 Cyber safety.
- 9 Internet technologies.
- 10 Cloud and Mobile technologies.
- 11 Multimedia technologies
- 12 Smart technology.
- 13 E-technology. E-business. E-learning. E-government.
- 14 Information technology in the professional sphere. Industrial ICT.
- 15 ICT Development Prospects

The course provides an overview of the major conceptual paradigms of Information and Communication Technologies, from their theoretical foundations to practical implementation

Topics will include

- Architecture of Computer Systems
- Operating systems and software
- Network technologies and telecommunications
- **ICTs** in the **professional field**
- Perspective trends of ICTs

What technologies?

•What do you understand by Information and Communication Technologies?

ICT refers to technologies that provide access to information through telecommunications. It is similar to Information Technology (IT), but focuses primarily on communication technologies. This includes the Internet, wireless networks, cell phones, and other communication mediums.

IN WHICH INDUSTRIES IS ICT USED?

Number Systems

Data Representation refers to the form in which **data** is stored, processed, and transmitted.

Four number systems:

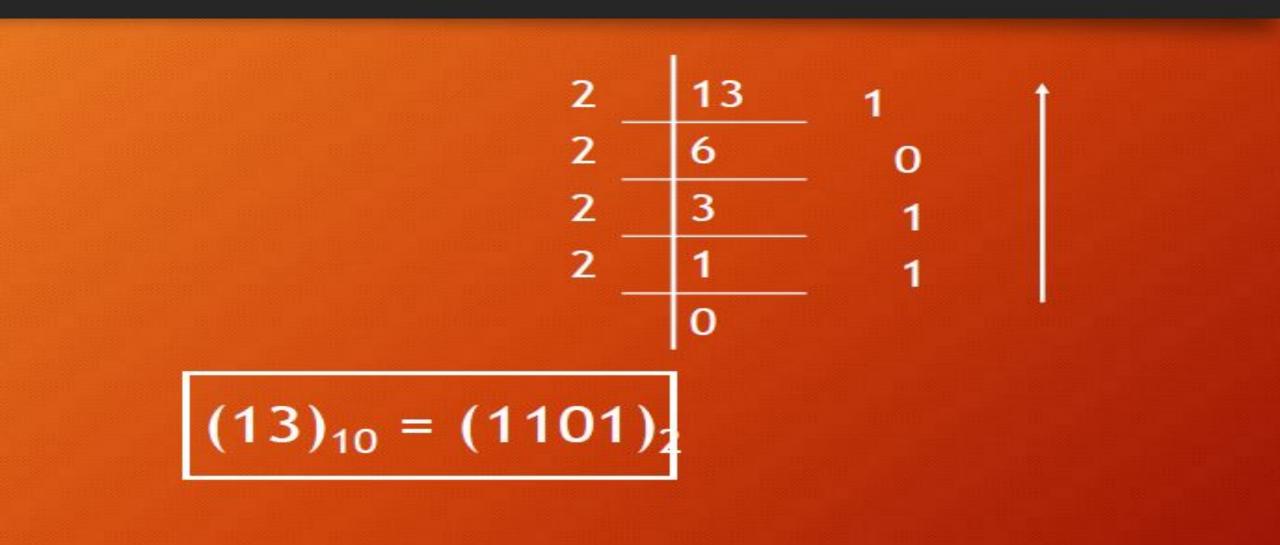
- Decimal (10)
- Binary (2)
- Octal (8)
- Hexadecimal (16)

General information

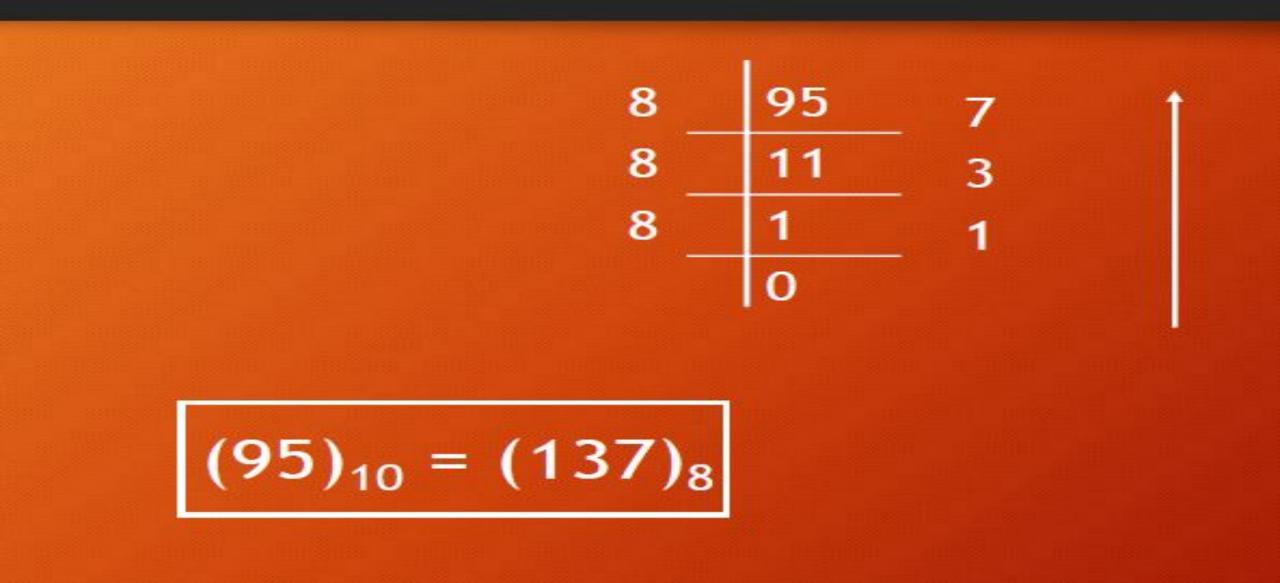
• A piece of data, such as an alphabet letter, may be represented using a sequence of binary digits- 0's and 1's. There are several types of codes used to represent character data. For example, using extended ASCII (America Standard Code for Information Interchange) code, the alphabet letter "a" can be represented using a series of eight binary digits, "01100001." Each binary digit is called a **bit**. And, eight bits is one **byte**.

00100000 > 00111110 01011100 2 01111010 100 10011000 10110110 1101002 11110010 00100001 ? 00111111] 01011101 € 011110110 1001001 n 10110111 F 11010101 1 1110011 " 00100010 @ 01000000[^] 01011110 | 01111100^U 10011010 | 10111000 π 11010110 Γ 11110100 # 00100011 A 01000001 01011111 0111101 10011011 10011 1001 11001 110011 100111 1010101 × 00100101 C 01000011 a 01100001 a 01111111 ¥ 10011101 a 10111011 J 11011001 × 11110111 & 00100110 D 01000100 b 01100010 C 10000000 t 10011110 10111100 r 11011010 ° 1111100 00100111 E 01000101 c 01100011 ii 10000001 f 10011111 1 10111101 11011 11011 1111001 < 00101000 F 01000110d 01100100 é 10000010á 10100000 1 1011110 = 11011100 111110 > 00101001 G 01000111e 01100101 a 10000011 1 10100001 1 10111111 11011101 11111011 * 00101010 H 01001000 £ 01100110 ä 10000100 0 10100010 L 11000000 11011110 111110 + 00101011 I 01001001g 01100111 à 10000101ú 10100011 - 11000001 - 11011111 2 1111101 • 00101100 J 01001010 h 01101000 a 10000110 10100100 T 11000010 4 11100000 1 1111110 - 00101101 K 01001011 i 01101001 c 10000111 N 10100101 F 11000011 B 11100001 11111111 - 00101110 L 01001100 j 01101010 2 10001000 10100110 - 11000100 11100010 / 00101111 M 01001101 k 01101011 ë 10001001 1011 1 11000101 1 11000101 1 11000101 Ø 00110000 N 010011101 01101100 è 10001010 c 10101000 F 11000110Σ 11100100 1 00110001 0 01001111m 01101101 1 10001011 1 10101001 1 11000111 0 11100101 3 00110011 Q 010100010 01101111 1 10001101 10101011 F 11001001 1 1100111 4 00110100 R 01010010p 01110000 A 10001110 4 10101100 4 11001010 2 11101000 5 00110101 S 01010011 g 01110001 8 10001111 1 10101101 = 11001011 8 11101001 6 00110110 T 01010100r 01110010 € 10010000 < 10101110 1 11001100 Ω 11101010 **7** 00110111 U 01010101s 01110011 a 10010001 10101111 = 11001101 δ 11101011 8 00111000 U 01010110t 01110100 ft 10010010 10110000 # 11001110 11000 11101100 9 00111001 ₩ 01010111 u 01110101 ô 10010011 10110001 ± 11001111 101101 OO111011 ¥ 01011001 w 01110111 à 10010101 ↓ 10110011 = 11010001 0 11101111 $< 00111100 \mathbb{Z} 01011010 \times 01111000 \hat{\mathbf{u}} 10010110 \frac{1}{10110100} \pi 11010010 = 11110000$ = 00111101 [01011011 y 01111001 ù 10010111 1 10110101 4 11010011 ± 11110001

ASCII code


Binary -> Decimal

$1101 = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$ $= 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$ = 8 + 4 + 0 + 1


 $(1101)_2 = (13)_{10}$

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

Decimal -> Binary

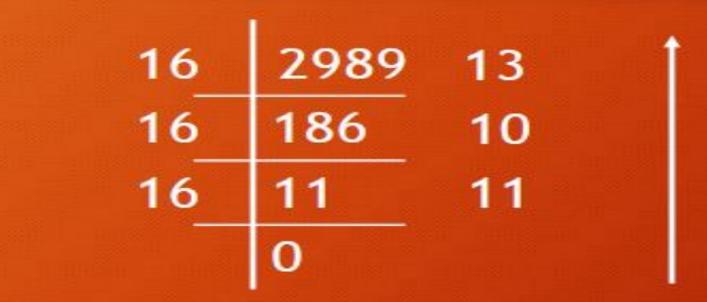
Decimal -> Octal

Octal -> Decimal

 $137 = 1 \times 8^{2} + 3 \times 8^{1} + 7 \times 8^{0}$ $= 1 \times 64 + 3 \times 8 + 7 \times 1$ = 64 + 24 + 7

 $(137)_8 = (95)_{10}$

Digits used in Octal number system – 0 to 7

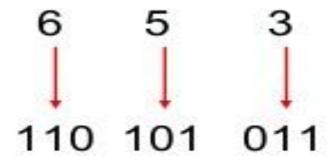

Hex -> Decimal

$BAD = 11 \times 16^{2} + 10 \times 16^{1} + 13 \times 16^{0}$ $= 11 \times 256 + 10 \times 16 + 13 \times 1$ = 2816 + 160 + 13

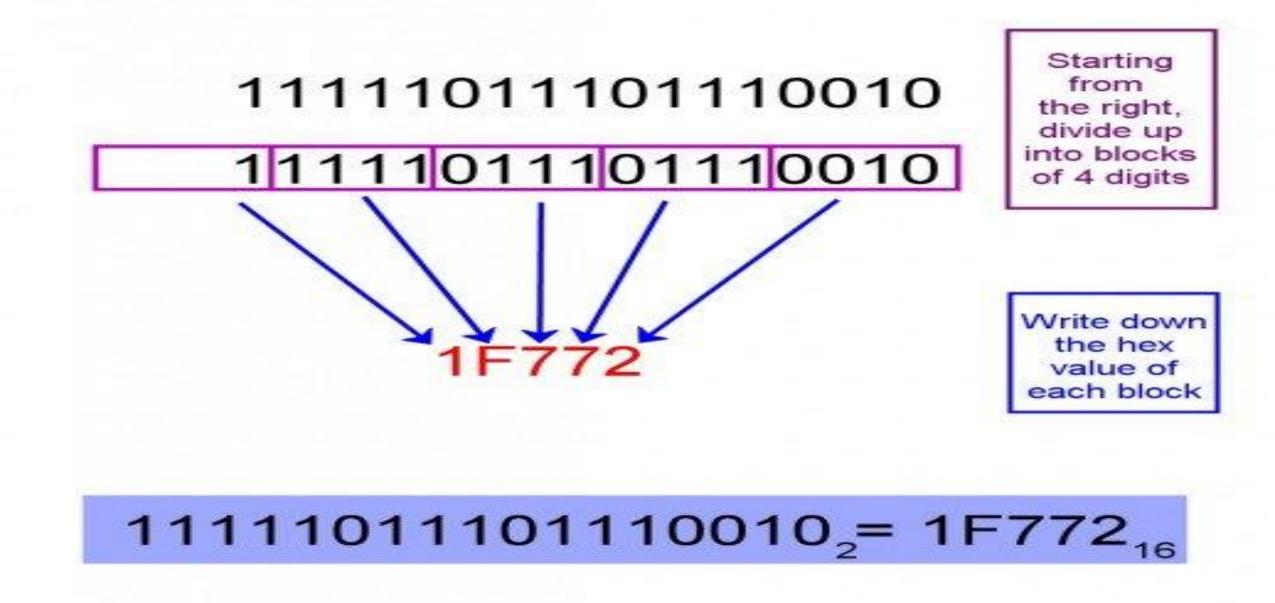
$$(BAD)_{16} = (2989)_{10}$$

A = 10, B = 11, C = 12, D = 13, E = 14, F = 15

Decimal -> Hex



Octal to Binary Conversion


Each octal number converts to 3 binary digits

Code 0 - 000
1 - 001
2 - 010
3 - 011
4 - 100
5 - 101
6 - 110
7 - 111

To convert 653₈ to binary, just substitute code:

Converting Binary to Hex

Given hexadecimal number = A2B₁₆

First, convert the given hexadecimal to the equivalent decimal number.

 $A2B_{16} = (A \times 16^2) + (2 \times 16^1) + (B \times 16^0)$

 $= (A \times 256) + (2 \times 16) + (B \times 1)$

- = (10 ×256) + 32 + 11
- = 2560 + 43
- = 2560 + 43
- = 2603(Decimal number)

Now we have to convert 260310 to binary

The binary number obtained is 1010001010112

Hence, A2B₁₆ = 101000101011₂

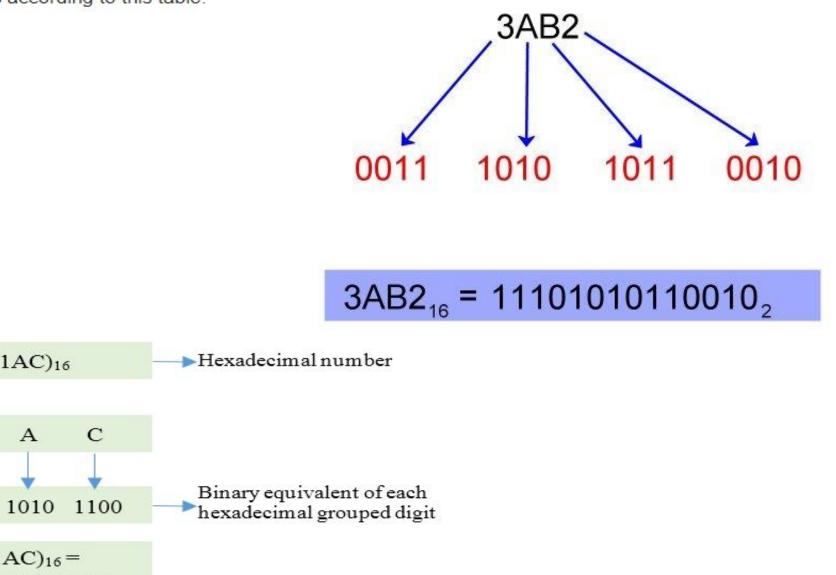
How to convert from hex to binary

Convert each hex digit to 4 binary digits according to this table:

(1AC)16

Α

 $(1AC)_{16} =$ $(000110101100)_2$


1

0001

С

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
С	1100
D	1101
E	<mark>111</mark> 0
F	1111

Converting Hex to Binary

Octal->hex

Ex: (Convert	E8A ₁₆	to or	ctal	Step 1 Octal t	o Binary	Conversion	1
First co	onvert th	e hex t	to bin	ary:	7	5 101	2 010	
1	110 100	0 101	10_2		So the b	oinary equ	ivalent is	11
	\uparrow \uparrow	1			Step 2:			
11	1 010	001	010	and re-group by 3 bits	Binary	to Hex C	onversion	
				(starting on the right)	0001	1110	1010	
Then c	onvert th	ne bina	ny to	· · · · · /	1	D	9	
			C 10 10 10 10 10 10 10 10 10 10 10 10 10					

So $E8A_{16} = 7212_8$

7 2 1 2

Hex to Octal Conversion

Number system conversion table from 1 to 15							
Decimal Number Base-10	Binary Number Base-2	Octal Number Base-8	Hexadecimal Number Base-16				
1	1	1	1				
2	10	2	2				
3	11	3	3				
4	100	4	4				
5	101	5	5				
6	110	6	6				
7	111	7	7				
8	1000	10	8				
9	1001	11	9				
10	1010	12	A				
11	1011	13	В				
12	1100	14	С				
13	1101	15	D				
14	1110	16	E				
15	1111	17	F				

HOMETASK for the next week

- 1) Be ready to Defense your 1 Lab
- 2) Be ready to answer questions from the lecture & labs
- 3) be able to solve problems (ex. Decimal->binary etc)
- 4) Upload lab1 before deadline

THANK YOU FOR YOUR ATTENTION!!!