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Background information

Four regional examples of ocean heat waves studied —
2012 North Atlantic Blob

2013-2016 North Pacific Blob

2018-2019 Southwest Indian Ocean Blob

2019-2020 South Pacific Blob

Conclusions




Possible factors controlling ocean heat waves?

Air circulation/pressure changes (heat redistribution)

Greenhouse gases mainly — Methane and
Carbon dioxide CO, Other 6%
Methane CH,

Water vapour H,O (most important)
Water Vapor and Clouds 75%

Water/cloud/ice distribution
Vegetation distribution
Ocean circulation changes
Astronomical factors e.g. sun & orbital changes
Submarine volcanic eruptions/lava flows into oceans
Heat generation through human activities

e S P — 4




What is the order of importance?

1t order

Astronomical forcing and the Sun e.g. glacial/interglacial cycles, solar cycles,
monsoons and seasons

2"d order
Volcanism generated geothermal heat/plate climatology
www.plateclimatology.com

How geological forces affect the hydrosphere and atmosphere including
terrestrial and submarine volcanic eruptions, their associated circulation
changes and the release of gases

3" order

Human-induced changes including urbanization, water cycle changes and
emissions of greenhouse gases




Known regional climatic variability
additional to monsoons
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Satellite observations since the late 1970s
NASA’s A-Train including CALIOP vertical profiles of aerosols
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ARGO ocean network of operational floats since early 2000s
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National contributions - 3881 Operational Floats February 2018

Latest location of operational floats (data distributed within the last 30 days)
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What is ENSO?

El Nino Southern Oscillation

Note — Pre-industrial era existence shown by coral archives.

An irregularly periodic variation in winds and sea surface temperatures over the tropical eastern Pacific
Ocean, affecting the climate of much of the tropics and subtropics. The warming phase of the sea
temperature is known as El Nino and the cooling phase as La Nina. The Southern Oscillation is the
accompanying atmospheric component, coupled with the sea temperature change: E/ Nino is

accompanied by high air surface pressure in the tropical western Pacific and La Nina with low air surface
pressure there.

La-Nina
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Southern Oscillation Index time series 1876-2017
pressure difference-between Darwin and Tahiti ElNiRS
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Source: Wiki




Why ENSOs occur in the Pacific?
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Classification of volcanic eruptions*®

(1) Sub-aerial / terrestrial

- switches on hot air followed by cooling (atmospheric warming, injection of ash,
gases and aerosols, blockage of shortwave radiation, cloud formation, pressure
changes, moisture redistribution, continental cooling, ozone depletion, circulation
changes, severe weather)

(2) Submarine / sea floor

- switches on hot seawater (cause of sea-surface temperature anomalies, pressure
changes, circulation changes, moisture redistribution, continental warming,
severe weather events including cyclones)

(3) Mixed
- initially submarine later sub-aerial (combination of 1 and 2).
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* Magmatic composition also important.




Sub-aerial
volcano
model

Ash & aerosols
reduce solar
radiation
leading to
cooling

Warm air
stores more
moisture —
water vapour
redistribution

Air pressure
changes (low)
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Volcanic Explosivity Index (VEI)

Used for the
estimation of
explosiveness of
volcanic eruptions
on land (subaerial)

(Newhall and Self
1982)
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Examples

Mono-Inyo Craters
past 5,000 years

E-15, 2010

Mount St. Helens
May 18, 1980

(~1km3)
Pinatubo, 1991
(~10 km?3)

Tambora, 1815
(>100 km?3)

Long Valley Caldera
760,000 years ago
(~600 km?)

Yellowstone Caldera
600,000 years ago

(~1,000 km3)

Above VEI 2
regional impacts
on weather
already detectable




Why study the present day? e.g. Iceland 2010 event

¢ 1 Forecast extent of ash cloud
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Most rellable record — Information age { Meteorologlcal observatlons
Importance — societal e.g. ( Satellite observations since ~1980
farming, climate model testing ( Weather disaster media reports

( Aviation safety studies
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Submarine volcano model

basaltic lavas ~1200°C

ing

Switching on hot seawater

NASA

Examples —

El Hierro volcano, Canary islands
10/2011 — 3/2012

Nishinoshima, 940 km south of
Tokyo 3/2013-9/2015

Off Mayotte 11/2018-4/2019

Possible effects —
Heating up seawater
Pressure changes
Surface wind changes
Sea-level changes
Ocean current changes




Statistics on submarine volcanoes

Total number ~1 million
Number rising 1 km from seabed 75,000
Magma output in oceanic ridges 75%

Active submarine volcanoes ~5000

Important facts —

Geothermal heat is released during eruptions changing the ‘normal’
ocean circulation

Known for volcanic ecosystems




El Hierro submarine eruption, Canary Islands
October 2011-March 2012

-18°20'

e The discoloured water was at least
20-30 km wide and 100 km long

e Spread southward

- SOUrce SOM!

- Res'tinéa*i‘ﬁ‘;'

Sarmiento de Gamboa
research vessel

- -18730° -1820' -18'10°

Submarine Ash plumes ¥ (a) () C) (d)
eruption Figure 1. (a) MODIS image of El Hierro submarine volcano location (27.78N. -18.04W) and. (b)-(d) multisensorial MERIS ((ESA®),

\ P RAPIDEYE® and hyperspectral HYPERION remote sensing images of EI Hierro volcanic plume.

1230 UTC 12/16/2011 14:45 UTC 13/10/2011

Submarine
eruption
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500 m
Figure 2. NASA MODIS RGB multitemporal images monitoring EI Hierro submarine volcano.

m Nov 2011 — i Source: Eugenio et al. (2014)




What was the observed impact of the hot seawater
in the North Atlantic Basin overlooked by
atmospheric scientists?

Brownish plume created

SourcewDaily mail reporter
(2011)
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North Atlantic Blob — combined effect
of the Sun and EI Hierro on SST on 28 June 2012
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Weather-related events or pattern in the North Atlantic Basin during 2012

Date Affected region Events or pattern
April-July England and Wales Wettest summer in 100 years with annual rainfall of 1331 mm (115% above average)
and severe flooding
May-August Central North America Drought estimated damage US$30 billion; most severe since 1895
Summer Arctic Ocean Record low sea ice
Summer Northern/central Europe

June-November

July

July
July-October
October
October
November
Winter

Winter

US east coast

Virginia

Greenland
Western/central Africa
US east coast

North Atlantic
England

US east coast

British isles

Abnormally wet summer with moisture able to penetrate the continental interiors

Extremely active hurricane season, tied with 1887, 1995, 2010 and 2011 for having the
third-most named storms on record but few made landfall

Hottest on record

Period of extended surface melting across almost the entire ice sheet
Abnormally wet with flood conditions

Hurricane Sandy estimated damage US$65 billion; 147 fatalities
Tropical storm Nadine tied record for the longest lasting Atlantic storm
Wettest week in last 50 years with severe flooding

Abnormally cool and wet due to the active polar airstream

Abnormally cold due to the active polar airstream



Notable severe weather events in 2012

New records for England & Wales —
wettest summer in 100 years
wettest week in last 50 years
explained by increase in storms

o0 FE

-.Hurrican
147 fatalities; estimated damage US$65 billion

20-27 November
tweets on UK
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Map displays all geocoded tweets mentioning flooding that were
published between Nov 20 and Nov 27, 2012, These data are
not normalised by population or area. Floatingsheep.org



2012-2016 volcanic eruptions in the Pacific

Date Volcano Activity

7/2012 Havre, north of Largest deep-ocean silicic eruption of the past century with a 400 km? pumice
New Zealand raft, lava sourced from 14 vents 900-1220 m depth

3/2013- Nishino-shima, Eruption was initially submarine until a new island appeared in November

9/2015 940 km South 2013
of Tokyo

12/2014- Hunga, Initially submarine until a new island was created

1/2015 Tonga

5/2015- Wolf, Basaltic lava flows into the Pacific Ocean

6/2015 Galapagos




Havre July 18-19, 2012 - largest silicic submarine eruption of the past
century 14 vents 900 to 1220 m depth (Carey et al. 2018)
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Nishino-shima submarine/terrestrial eruption
940 km south of Tokyo
March 2013 to August 2015

Image on November 13, 2013: Japan Coast Guard Image on December 8, 2013: NASA
Submarine eruption began in March 2013




Main trigger of 2014-2016 ENSO
sea-surface temperature anomalies created the
North Pacific Blob on Janua 2 2014

NOAA/NESDIS 50 KM GLOBAL ANAL Anomaly (degrees C)
(white ce)
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Events linking the Blob to the Nishino-shima eruption

Date Nishino-shima eruption activity Northern Pacific Blob

March 2013 Hot seawater first appeared Initial warming in the northwest Pacific
November Appearance of a new island Initial Blob 800 km wide and 91 m deep

2013

December Island rose 20 to 25 m above sea level with -
2013 an area of 5.6 km?

February - Temperature was around 2.5°C above normal
2014
June 2014 - Name ‘Blob’ coined by Nicholas Bond,

Blob size reached 1600 km x 1600 km and 91 m deep
spread to coastal North America with three patches
off Alaska, Victoria/California and Mexico

December Island nearly 2.3 km in diameter and 2014 year without winter western Pacific coast
2014 rose to about 110 m above sea level major biodiversity impacts including algal bloom
January- Volcanic eruption continued with episodic Continuation of biodiversity impacts with sustained
August lava flows toxic bloom in Monterey Bay

2015




The Blob separated into three parts
on September 1, 2014
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Pressure distribution during the North Pacific Blob
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Ecosystem changes

Warm seawater much less nutrient rich than cold seawater
Impacts —
Reduction in coastal upwelling

Reduction in phytoplankton productivity with knock on effects on
zooplankton

Food chain effect

Salmon catches dropped drastically

Death of almost 1 million birds between summer 2015 to Spring 2016 (reported
by the Guardian on January 16, 2020)




Toxic algal bloom along the west coast of North America
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Sea-surface temperature anomalies on
June 29, 2015 after the Wolf eruption ended

: bleaching

<
s

b Wolf @ruption'. A
eruption . | 5-7/2015 with’?‘é'-

£ ¥12/2014-1/2015} - ;s inilava flow entering ¥
Lo i’ ! L :

4 H
L H




A natural cause of Great Barrier Reef
coral bleaching in January 2015

ARG uurmm; SEXCELLENCE

: . @ Coral Reef Stuﬂgs

Rlse in ocean amdlty caused by SO degassmg may also be at work




ENSO 2014-2016 was stronger because of the Blob

comparison of seawater temperature anomaly US west coast

1997-98 2015-16

S Portland Portland

Source: Tseng (2017)
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Comparison of sea-level anomaly 1997 and 2015
Source: Jentoft-Nilsen (2015)
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Comparison of ocean surface topography during El Nino
1997-1998 and 2015-2016

MAY 8 2017 2] Jason-3
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NASA
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Eruption of Wolf volcano, Galapagos
late May to June 2015 VEI 4

Thermal IR

thinkgalapagos.com




Establishment of the strong and long-lasting
2014-2016 El Nino August 31, 2015




Arctic sea ice changes 2007-2017

Explained by the release of geothermal heat through volcanism
(Source: Clutz 2017)

September Arctic Ice Extent Monthly Average

El Hierro Nishino-shima
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Arctic sea ice extent 2007-2016
Source: National Snow & Ice Data Centre
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Influence on minimum Arctic sea ice extent

Winter 2014-2016

Sea Ice Extent Sea Ice Extent Sea ce Extent
Dec 2014 Dec 2015 Dec 2016

IN MILLIONS OF SQUARE N MILLIONS OF SQUARE
KILOMETERS.
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Ranking of Arctic monthly air temperatures 1979-2017
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New submarine volcanic eruption
discovered in the Mozambique Channel
November 2018-May 2019

CTANZANIA

MADAGASCAR

Antananarivo O

MADAGASCAR




Multibeam sonar waves, reflecting off the sea floor
southeast Mayotte, showing an 800-m-tall volcano
with a 5§ km diameter anda rising gas-rich plume
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Global map of sea-surface temperature anomalies on
November 18, 2019
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Lateiki submarine eruption, Tonga
new island created November 7, 2019
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Global map of sea-surface temperature anomalies on
November 21, 2019
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Global map of sea-surface temperature anomalies on
December 9, 2019
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Global map of sea-surface temperature anomalies on
December 19, 2019
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Statistics of the South Pacific Blob

Marine heat wave east of New Zealand — High pressure, sunny
sky and light wind

1 million square kilometers (size of Texas)
6 degree Celsius above normal

Total thickness of hot seawater 50 metres

Prof. J. Renwick — Heated by the sun through natural causes
not by global warmin




Marine heatwave brings tropical grouper from
3000 km away to New Zealand waters
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Submarine volcanic eruptions contributing geothermal heat to
the South Pacific Blob
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Landsat images showing dramatic melting in the Eagle Island region of Antarctica on
February 4, 2020 in comparison to February 13, 2020. Source: NASA




Map derived from the Goddard Earth Observing System model
representing air temperatures at 2 m above the ground on February 9,
2020. Source: NASA.
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Conclusions

(1) Volcanism is an underestimated natural cause of ocean heat waves.

(2) All 4 case studies of regional ocean heatwaves were caused mainly by the
release of geothermal heat through volcanism.

(3) Man-made carbon dioxide from fossil fuels are not responsible for such heat
waves.

(4) The occurrence of heat waves may influence the sea-ice extent in both the
Arctic and the Antarctic.

(5) The biodiversity changes observed were of a temporary nature which is
inconsistent with global warming.

(6) Because sulphur oxides released into seawater through volcanism is much
more acidic than carbon dioxide, it is more likely to cause coral bleaching.
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