Корреляционнорегрессионные модели

Представление исходных данных

$$Y_{t1}, Y_{t2}, Y_{t3}.....Y_{tn}$$

Представление исходных данных

- y₁
- Y₂
 - . . .
- y_n

$$X_{11} X_{12} \dots X_{1k}$$
 $X_{21} X_{22} \dots X_{2k}$
 $X_{n1} X_{n2} \dots X_{nk}$

$$n > k \sim 3$$

Представление исходных данных

Объект	Время	Признаки			
Объект 1	t=1	Y ₁₁	X ₁₁	Z ₁₁	
	t=2	Y ₂₁	X ₂₁	Z ₂₁	
	t=T	Y _{1t}	X _{1t}	Z _{1t}	
Объект 2	t=1	Y ₂₁	X ₂₁	Z ₂₁	

Построение корреляционнорегрессионной модели

$$y = B_0 + B_1 * X_1 + B_2 * X_2 + ... B_k X_k + \varepsilon$$

Оценка параметров модели

- Оценка параметра называется *несмещенной*, если ее математическое ожидание равно оцениваемому параметру
- Оценка параметра называется состоятельной, если она сходится по вероятности к оцениваемому параметру при возрастании количества наблюдений
- Оценка параметра называется эффективной, если она имеет наименьшую дисперсию среди возможных несмещенных оценок параметра, вычисленных по выборкам одного и того же объема п

Требования к исходным данным

- Объясняющие переменные x₁, x₂.....x_к рассматриваются как неслучайные величины
- Величины х₁, х₂.....х_к не связаны между собой линейной функциональной зависимостью

Требования к регрессионным остаткам

- Регрессионные остатки ε_i есть взаимонезависимые случайные величины с нулевым математическим ожиданием
- Регрессионные остатки ε_і имеют постоянную остаточную дисперсию
- Вектор регресионных остатков подчиняется n-мерному нормальному закону распределения вероятностей

Исходная информация

•
$$B = (X^T X)^{-1} X^T Y$$

$$1 X_{11} X_{12}$$

$$1 X_{n1} X_{n2}$$

Используемые функции

- Х^т транспонированная матрица.
- Копировать, специальная вставка, выбрать окошко «транспонировать», ввод
- МУМНОЖ
- МОБР

Shift + Alt + Enter

Оценка значимости уравнения в целом

• F_{pacy} =
$$\frac{Q_r/(k+1)}{Q_{ocm}/(n-k-1)}$$

Сравнение расчетного и табличного значения

- Fтабл = FPACПОБР
- Вероятность = вероятности ошибки
- V1 = K+1
- V2 = n-k-1
- Fрасч > Fтабл Уравнение значимо

Оценка значимости регрессоров

Tbj = bj/sbj

Ковариационная матрица по bj

•
$$S^*(X^TX)^{-1}$$

•
$$S2 = Qoct/(n-k-1)$$

По диагонали этой матрицы находим Sbj в квадрате

Определение значимости регрессоров

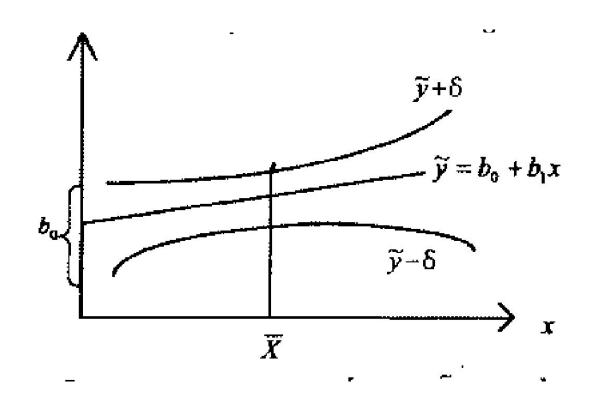
- tтабл = СТЬЮДРАСПОБР
- Вероятность ошибки
- V1=n-k-1

tpacч > tтабл по абсолютной величине,
 то регрессор значим

Множественный коэффициент детерминации

$$R_{y}^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - y_{MOO})^{2}}{\sum_{i=1}^{n} (y_{i} - y_{CP})^{2}}$$

Точечный и интервальный прогноз



łМ

Расчет интервального прогноза для простейшей модели

•
$$Y_{n+1} \in Y_{n+1} \pm t_T S \sqrt{\frac{1}{n} + \frac{(x_{n+1} - x_{cp})^2}{\sum_{i=1}^{n} (x_i - x_{cp})^2} + 1}$$

Расчет интервального прогноза для множественной модели

•
$$Y_{n+1} = Y_{n+1} \pm t_T S \sqrt{(X^0)^T (X^T X)^{-1} X^0 + 1}$$