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Extending life span by increasing oxidative stress
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Various  nutritional,  behavioral, and pharmacological interventions have been previously shown to extend  life span in 
diverse model organisms, including Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila  melanogaster, mice, 
and rats, as well as possibly monkeys and humans. This review aims to summarize  published evidence that several 
longevity-promoting interventions may converge by causing an activation of  mitochondrial oxygen consumption to 
promote increased formation of reactive oxygen species (ROS). These  serve as molecular signals to exert downstream 
effects to ultimately induce endogenous defense mechanisms  culminating in increased stress resistance and longevity, 
an adaptive response more specifically named  mitochondrial hormesis or mitohormesis. Consistently, we here 
summarize findings that antioxidant  supplements that prevent these ROS signals interfere with the health-promoting 
and life-span-extending  capabilities of calorie restriction and physical exercise. Taken together and consistent with 
ample published  evidence, the findings summarized here question Harman's Free Radical Theory of Aging and rather 
suggest  that ROS act as essential signaling molecules to promote metabolic health and longevity.

© 2011 Elsevier Inc. Open access under CC BY-NC-ND license.

Contents

Calorie  restriction   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 327
Reduction  of  specific  macronutrients   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 328
Impaired  insulin/IGF-1  signaling    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 329
Induction  of  mitochondrial  metabolism  by  calorie/glucose  restriction  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 329
Oxidative  stress  and  mitochondrial  hormesis  (mitohormesis)     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  330  Physical  

exercise     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 330

Conclusions   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 331
Acknowledgments  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 331
References     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 331

Calorie 
restriction

Calorie restriction (CR), i.e., a reduction in ad libitum calorie up-  take 
by 10 to 50%, represents the most convincing intervention to  retard 
aging and attenuate age-related disease in multiple species.  Since 1935, 
when McCay initially described the influence of CR on life  expectancy, it 
has been frequently demonstrated that CR is able to  increase the median 
and maximal life span in a variety of organisms,  suggesting a conserved 
underlying mechanism [1,2].

Although CR clearly reduces risk factors associated with aging in  
humans, including type 2 diabetes and cardiovascular diseases, it is still  a 
matter of debate whether CR is capable of increasing life expectancy  of 
humans [3–5]. A recent study in nonhuman primates found no  significant 
effect of CR on overall mortality. However,  arbitrarily  defined 
“age-related mortality” (which moreover explained only 54%  of deaths) 
was decreased in those monkeys. Most interestingly and  contrasting with 
ad libitum-fed animals, monkeys on CR did not show  any impairment in 
glucose homeostasis, strikingly reducing the  prevalence of metabolic 
disorders such as type 2 diabetes [6]. Thus, it  seems possible that CR is 
also sufficient to improve the life span of  humans, which is also 
supported by additional findings [3–5,7,8].

The concept of CR was initially based on the assumption that  
lowering caloric intake would result in a subsequent reduction of the
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metabolic rate. Hence, it was postulated at the beginning of the 20th  
century that the maximum life span of an organism is inversely  
proportional to the nutritive energy metabolized [9]. Consequently,  
Pearl's Rate-of-Living Hypothesis, formulated soon after, suggests that  
increased metabolic rate results in decreased life span in eukaryotes  [10].

A feasible molecular cause for this hypothesis was proposed in  1956  
by Harman, who connected metabolic activity, especially  that  of 
respiratory enzymes, with the formation of potentially harmful  reactive 
oxygen species (ROS) [11]. Accordingly, increased metabolic  rate would 
promote ROS formation, which subsequently causes  damages within the 
cell and beyond. The accumulation of these  damages results in 
age-related decline of cellular functions and  ultimately to death of the 
organism [11]. Up to now, this so-called Free  Radical Theory of Aging 
(FRTA) has become a popular and frequently  cited theory in aging 
research [12].

However, more recent findings regarding the question whether
CR actually decreases metabolic rate are, at least in part, inconsistent  
with FRTA. Hence, it has been reported that CR increases metabolic  rate 
(quantified by both oxygen consumption and heat production) in  the 
nematode and well-established model organism for aging  research, 
Caenorhabditis elegans [13]. Furthermore, a positive corre-  lation 
between low metabolic rate and enhanced life span could also  not be 
observed in the fruitfly Drosophila melanogaster [14].

Despite the fact that CR has been extensively investigated in a
broad range of species, the underlying mechanisms are still elusive. As  
mentioned above, it is commonly accepted that CR is able to retard the  
onset of a variety of diseases related to aging, including cardiovascular  
diseases, type 2 diabetes, and cancer. Therefore, CR-mediated pre-  
vention of chronic and ultimately life-threatening disorders that  reduce 
longevity could be the reason for the life-span-extending  effects of CR. 
Additionally, it has been shown that CR itself stimulates  molecular 
processes that diminish age-associated disease as well as  improving life 
expectancy. Accordingly, it was frequently reported  that CR induces 
defense mechanisms, especially those that are  involved in ROS 
detoxification such as radical-scavenging enzymes  [15–22] and possibly 
beyond, including phase II response enzymes.  This association of CR on 
the one hand and increased antioxidant  defense on the other has been 
commonly misinterpreted as being  caused by a primarily decreased ROS 
production in states of CR.  Conversely, and as explained in more detail 
below, more recent  investigations suggest that adaptive response 
mechanisms seem to be  the cause of the aforementioned beneficial 
alterations unquestionably  initiated by CR [23–27].

Reduction of specic 
macronutrients

Macronutrients are represented by carbohydrates, triglycerides,  and 
proteins, which, after experiencing enzymatic breakdown, are  ultimately 
metabolized as monosaccharides (such as glucose), fatty  acids, and 
amino acids, respectively. They provide the bulk of energy  required by 
the organism. In this regard it should be noted, however,  that only 
glucose can be metabolized in the absence of oxygen. In  contrast, ATP 
generation using fatty acids and some amino acids  requires 
mitochondrial oxidative phosphorylation (OxPhos) and  therefore oxygen. 
Inversely, only metabolism of glucose can generate  ATP independent of 
mitochondrial organelles and hence without  promoting ROS production.

So far, only a few studies have investigated the question whether
restricting a single macronutrient can cause a response comparable to  
that seen in states of general CR. Whereas restriction of triglyceride  
uptake in invertebrates has not been examined yet, restriction of  lipids in 
mice without CR does not influence life span [28].

The influence of dietary protein levels on life span has been  
investigated primarily in D. melanogaster and rodents. Accordingly, it  was 
shown that reduction of nutritive protein content results in

extension of life expectancy in mice [29–31]. Similarly, casein  restriction 
prolongs life span in D. melanogaster [32]. On the other  hand, 
supplementation of essential amino acids, especially methio-  nine, 
abolishes the life-span-extending effect of CR in flies [33].  Interestingly, 
methionine restriction in rodents has been shown to  exert antiaging 
properties and improves tissue-specific mitochondrial  biogenesis as well 
as aerobic capacity [34–36], whereas high protein  intake results in 
increased lipid peroxidation and reduced superoxide  dismutase activity 
[37]. Consistently, impaired peptide transport  extents life span in C. 
elegans [38].

In  apparent  contrast  to  the  above-mentioned  fact  that  ATP
generation from glucose is capable of avoiding ROS production,  glucose 
restriction has been found to be beneficial in various lower  organisms as 
well as in rodents. In D. melanogaster, for instance,  restriction of sugar 
reduces mortality and extends life span [39]. The  same applies for the 
model organism Saccharomyces cerevisiae, in  which depletion of glucose 
results in life-span extension dependent  on induction of respiration as 
well as on sirtuins [40,41]. However,  whether sirtuins are involved is still 
a matter of debate [42–45].  Accordingly, sirtuin-independent pathways 
have been discussed  [22,46].

Although it is generally difficult to restrict dietary glucose in  
eukaryotic organisms such as C. elegans or rodents, the use of 2-  
deoxyglucose (DOG) is frequently reported to achieve depletion of  
glucose metabolism [47]. DOG is a synthetic glucose analogue that  
inhibits glycolysis in a competitive manner due to its inability to be  
further metabolized after conversion into deoxyglucose 6-phosphate  
[48]. Application of DOG was shown to mimic a ketogenic diet (very  low 
carbohydrate diet) as well as metabolic hallmarks of CR in rodents  
[49–51]. It is therefore commonly accepted that DOG represent a  
powerful CR-mimetic compound [52–55].

DOG exposure results in decreased glucose availability and life-  span 
extension in C. elegans [23], whereas it does not extend life span  in rats 

[56]. Notably, and similar to the above-mentioned findings in S.  
cerevisiae, glucose restriction in C. elegans not only promotes life span  

but also increases oxygen consumption [23]. However, and in contrast  to 
yeast, in nematodes sirtuins seem not to be involved [23]. It was  

suggested instead that the underlying mechanism in regard to life-  span 
prolongation is dependent on AMP-activated kinase (AMPK)  [23]. AMPK 

is assumed to be a central key regulator of energy  metabolism within the 
cell [57]. Functionally similar AMPK ortholo-  gues have been found in 

lower organisms such as worms and flies,  suggesting a highly conserved 
mechanism [58–60]. Metabolic stress,  e.g., cellular lack of energy, 

activates AMPK, which in turn up-  regulates energy-producing processes 
such as mitochondrial biogen-  esis leading to neutralization of the energy 

deficit, possibly with  additional health-promoting implications [57]. 
Consistently, applying  metformin, a long-standing antidiabetic drug, to C. 

elegans activates  AMPK and subsequently promotes adaptive processes 
involved in CR  and oxidative stress response, culminating in extended life 
span [61].  As an alternative approach to influencing intracellular glucose  
concentrations in mammals, mice with impaired GLUT-4 transporters  in 

muscle and adipose tissue were established. These mice show  typical 
metabolic switches such as fasting hyperglycemia, glucose  intolerance, 

increased fatty acid turnover, and utilization. However,  life span 
(examined up to 18 months of age) was not affected [62].  Increased 

cellular glucose availability due to overexpression of GLUT-  4, on the 
other hand, was also shown to lack any effect regarding  extension of life 

span [63]. In addition, increased glucose abundance  in C. elegans, 
examined in three independent studies, reduces life span

significantly [23,64,65].
In humans, varying the relative amounts of macronutrients within

diets has been postulated to be health beneficial in regard to obesity  and 
cardiovascular disease prevention. Although low-carbohydrate/  
high-protein diets are as efficient as low-fat/high-carbohydrate diets  in  
regard  to  weight  loss,  serum  parameters  known  to  determine
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cardiovascular risk were shown to be positively influenced by a  reduction 
in dietary carbohydrate consumption [66–68]. Very low  carbohydrate 
diet has been also demonstrated to reduce several  inflammation markers 
in overweight men and women with athero-  genic dyslipidemia [69]. 
However, more research, especially long-  term studies, is needed to 
evaluate the putative effect of low-carbo-  hydrate diets on human health.

Impaired insulin/IGF-1 
signaling

In mammals, insulin and IGF-1 represent peptide hormones  produced 
in pancreatic β-cells and liver, respectively. Insulin is a  regulator of the 
peripheral glucose metabolism, most notably glucose  uptake. In addition, 
insulin is also involved in other metabolic  processes such as fat 
metabolism. IGF-1 is produced as a consequence  of growth hormone 
(GH) (also called somatotropin) release from the  pituitary gland, which 
stimulates subsequently IGF-1 production in  the liver. IGF-1 is therefore a 
mediator for some of the GH functions,  thus involved in growth and 
anabolism. Insulin, IGF-1, and GH  mediate their effects by binding at 
specific and distinct receptors in  mammals.

Mice with reduced GH and/or IGF-1 signaling exhibit dwarfism
with a phenotype that is comparable to those of mice exposed to CR  [70]. 
As shown for CR, those mice are also long-lived [71]. Conversely,  
increasing GH availability leads to improved body size and diminishes  life 
expectancy [72,73]. Furthermore, heterozygote impairment of the  IGF-1 
receptor signaling in the entire animal, as well as impairment of  the IGF-1 
receptor in neurons, results in life-span extension in mice by  preventing 
neurodegenerative processes [74,75]. Conversely, long-  term IGF-1 
exposure leads to mitochondrial dysfunction and reduced  cell viability in 
human cell culture [76].

Down-regulation of insulin receptor activity in humans is assumed
to be a cause for insulin resistance. This state is defined as an inappro-  
priate reduction in the intracellular response to extracellular insulin  [77]. 
Consequently, a reduction in GLUT-4-mediated glucose uptake,  which 
represents a key insulin response, occurs. Therefore, intracel-  lular 
glucose availability is reduced in subjects suffering from insulin  
resistance [78].

However, despite the fact that global disturbance of the insulin
receptor in mice results in a prenatally lethal phenotype, muscle-  specific 
knockout mice experience neither hyperglycemia nor  diabetes. Instead, a 
remarkable rise in fatty acid turnover has been  observed [79]. Although 
life-span data on these mice are unavailable,  disruption of the insulin 
receptor in adipose tissue only causes  prolongation of life span [80]. 
Moreover, disruption of the insulin  receptor substrate 1 (IRS-1), which is 
localized downstream of both  the insulin and the IGF-1 receptors, is 
associated with murine lon-  gevity as well as knockouts of neuronal IRS-2 
and heterozygous global  IRS-2 [81,82].

Moreover, and as initially published more than 20 years ago,  impaired 
insulin/IGF-1 signaling strikingly prevents aging in inverte-  brates. 
Whereas in mammals insulin and IGF-1 bind to specific and  distinct 
receptors, in C. elegans and D. melanogaster insulin and IGF-1  signaling is 
limited to one receptor. Hence, mutations in the corre-  sponding receptor 
orthologues as well as in downstream components  were shown to be 
life-span extending in worms and flies in a manner  even more 
pronounced than in mammals [83–87]. C. elegans daf-2  mutants, which 
show impaired activity of the orthologue of the  mammalian insulin/IGF-1 
receptor, live twice as long as wild-type  nematodes [84]. Although it is 
not known whether glucose uptake or  intracellular glucose availability is 
affected in this regard, a very recent  work on daf-2 mutants indicates that 
the age-associated decline in  mitochondrial activity, e.g., mitochondrial 
protein content and energy  supply, is delayed in comparison to wild-type 
animals [88].

In summary, it seems that reduction of the insulin receptor as well  as 

insulin receptor substrate below a certain threshold contributes to

longevity in a variety of organisms, including worms, flies, and mice.  This 
may be also relevant to humans because mutations of insulin/  IGF-1 
signaling have been linked to regulation of life expectancy in  various 
cohorts [89,90].

Whether reduced insulin/IGF-1/GH signaling lengthens life span in  
the same manner as CR is an ongoing matter of debate. Although  several 
studies have demonstrated independent mechanisms, others  have 
proposed  that  similar  pathways  and  processes  are  initiated  by both 
interventions [59,91–101]. Based on the assumption that  mutations 
associated with impaired insulin/IGF-1 signaling cause  reduced 
intracellular glucose availability, it seems likely that  subsequent effects 
are comparable to those seen in glucose-restricted  model organisms, at 
least in regard to metabolic shifts and also  possibly life-span-extending 
mechanisms. Although to date direct  evidence is missing, some studies 
provide support for this hypothesis  [102–106].

Induction of mitochondrial metabolism by calorie/glucose  
restriction

In general, mitochondria are cellular organelles that provide the  bulk 
of energy within the cell. ATP generation due to mitochondrial  OxPhos is 
considerably more efficient in comparison to nonoxidative  metabolism of 
glucose and some amino acids. Whereas glycolytic  breakdown of 1 mol of 
glucose generates 4 mol of ATP, its oxidative  metabolism produces 30 mol 
of ATP. Mitochondria also produce ROS  as a by-product of OxPhos. Thus, 
being the main producer of cellular  energy as well as a source of 
potentially harmful ROS, mitochondria  appear to exert a central role in 
physiological and pathophysiological  processes.

Accordingly, mitochondrial dysfunction is associated with the  onset of 
age-related diseases such as diabetes, cancer, and neurode-  generation 
[107–110]. Furthermore, impairment of mitochondrial  activity is 
assumed to be a main cause of the aging process [111,112].  Whether this 
decrease in mitochondrial capacity is linked to altered  production of 
mitochondrial ROS seems questionable.

Although a few studies suggested that overall net calorie uptake
during the lifetime is unaltered in CR [39,113], it is commonly  accepted 
and agreed upon that by definition calorie/glucose restric-  tion causes a 
reduction in available nutritive energy. This short-term  energy deficit has 
been proposed to induce mitochondrial activity to  counteract the energy 
depletion. Accordingly, calorie/glucose restric-  tion causes an increase in 
mitochondrial respiration in yeast and  worms [23–25,40]. Enhanced 
mitochondrial activity is, as shown in  these studies, associated with 
life-span extension [23–25,40]. Fur-  thermore, CR promotes 
mitochondria biogenesis and OxPhos in  rodents as well as enhancement 
of respiratory capacity in mammalian  cells [114,115]. These results are 
in line with the observation that  energy expenditure as a function of body 
mass is unexpectedly  increased in calorie-restricted rats [116]. 
Moreover, as mentioned  before, reduced insulin/IGF-1/GH signaling 
stimulates mitochondria  metabolism in rodents [102,104–106]. In 
addition, an abundant  supply of branched-chain amino acids increases 
mitochondrial  biogenesis and promotes longevity in yeast and mice 
[117,118].  Finally, further interventions that induce mitochondrial 
activity, such  as pharmacological treatments and physical exercise, are 
capable of  improving life span [119–123].

In contrast, and as mentioned before, reduced mitochondrial  activity 
has been shown to decrease life span in various organisms  such as S. 
cerevisiae, C. elegans, and rodents [124–126].

In regard to proposed mechanisms involved in the activation of
mitochondrial metabolism some key cellular regulators have been  
frequently reported, including the  previously  mentioned  sirtuins  and 
AMPK. Activation of these proteins is associated with increased  
mitochondria activity. In contrast, impairment of another nutrient-  
sensing  pathway,  mTOR  (mammalian  target  of  rapamycin),  was
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shown to extend life span in S. cerevisiae by inducing mitochondrial  
metabolism [127,128]. Consistently, the translational inhibitor 4E-BP,  
which is repressed by TOR, regulates mitochondrial activity in CR flies  
[129]. Furthermore, TOR signaling has been shown to be regulated by  
AMPK, suggesting that both nutrient-sensing pathways are located  
upstream of mitochondria function, thereby representing key regu-  lators 
of mitochondrial metabolism [130].

Taken together, there are numerous studies linking mitochondrial  
activity with prolongation of life expectancy, suggesting that a meta-  bolic 
switch to oxidative metabolism seems to be beneficial in regard  to delay 
aging and the onset of age-related diseases.

Oxidative stress and mitochondrial hormesis 
(mitohormesis)

Increased ROS formation as a consequence of increased metabolic  
rate has been postulated to be the major determinant of life span [11].  
Because mitochondria are an intracellular source of ROS, the theory was  
extended to the mitochondrial free radical theory [131], without the  
knowledge that meanwhile the fact that increased metabolic rate does  
not necessarily result in increased ROS formation had been established.  
Thus, significant research has been done to prove this hypothesis with  
inconsistent and partly contradictive results [132]. However, a  
considerable number of findings in various organisms suggest that  
reduction of oxidative stress is associated with prolongation of life  
expectancy [133–147]. Consequently, ROS-lowering interventions  were 
widely proposed as an antiaging strategy in humans. Antioxi-  dants, a 
group of synthetic or naturally occurring substances, which are  capable 
of scavenging free radicals, were extensively examined in that  regard. 
Unexpectedly and in contrast to some of the above-mentioned  work in 
lower organisms, several prospective clinical intervention  studies were 
unable to show a positive association between supple-  mentation with 
antioxidants and health-beneficial effects. Whereas  most studies found a 
lack of effect in regards to health promotion in  humans [148–162], other 
reports even suggest that antioxidants may  promote cancer growth 
[163–168]. Moreover, supplementation with  antioxidants has been linked 
to increased incidence of a number of  diseases with adverse effects on 
human longevity [169–175].

Not surprisingly, these findings question Harman's FRTA and  require 
a different point of view concerning the role of mitochondrial  ROS 
formation. Accordingly, numerous findings have emerged in  recent years 
indicating that ROS may evoke cellular signaling that  promotes metabolic 
health and longevity. It has been assumed that  they serve as essential  
signaling  molecules  delivering  messages  from the mitochondria to 
other  cellular  compartments in  response  to physiological or 
pathophysiological changes [23,176–190]. More-  over, and given the 
increased levels of oxidative damage during  increasing age, intrinsic 
aging may be considered an insufficient  ability to respond to endogenous 
ROS signals.

Interestingly,  exposure  of  C.  elegans  to  hyperbaric  conditions
results in stress resistance and prolongation of life expectancy,  whereas 
such conditions cause an increase in mitochondrial ROS  formation 
[191–194]. Hypothermia, a state that is associated with  extend life span 
in mice and C. elegans [195,196], has been recently  shown to induce 
mitochondrial ROS production as well [197]. More-  over, it was shown 
that CR also  induces low-level stress  leading to  the same adaptive 
processes, such as increased stress resistance and  longevity 
[21,26,198–200].

These findings insinuate that so-called adaptive response process-  es 
may explain how increased ROS formation culminates in  promotion of 
health and life span. Interestingly, low doses of ROS  seem to exert such 
effects, whereas higher doses are unquestionably  detrimental. Such 
biphasic responses to a potentially harmful com-  pound are commonly 
named hormesis, a concept that was initially  postulated in 1943 by 
Southam and Ehrlich and which was shown to  have significant impact on 
aging with a variety of stressors described  [201–205]. Later, this term 
was extended to mitochondrial hormesis

or mitohormesis, with regard to mitochondrial ROS as a hypotheti-  cally 
sublethal stressor [206].

In agreement with this concept, it has been frequently reported  that 
rodents exposed to CR exhibit elevated antioxidant defense  capacities 
[15–20,207]. Furthermore, life-extending glucose restric-  tion in yeast 
was shown to be accompanied by a decrease in ROS  production, whereas 
respiration was enhanced [22]. On the other  hand and  in  conflict  with  
these  data,  it  was  also  reported  that  the same  intervention  in  the  
same  model  organism  increases  ROS production as well as respiration 
[23–25,43,208,209]. Moreover,  antioxidant enzyme activity was found to 
be elevated as well  [24,43,208,209], suggesting a potential involvement 
of increased  respiration, enhanced ROS formation, and the induction of 
ROS  defense mechanisms in regard to regulation of longevity.

Consistently,  numerous studies  using various  model organisms
were unable to find any evidence to support that lowering ROS is  
beneficial in regard to longevity, nor that increasing antioxidant  capacity 
extends life span [210–227]. Moreover, life-span-extending  mutations in 
C. elegans are commonly accompanied by increased  stress resistance and 
sometimes paralleled by enhanced metabolic  activity [228–233]. 
Furthermore, in the field of neuroprotective  research, similar hormetic 
results were achieved with CR as well as  DOG application in rodents 
[234]. Depletion of mitochondrial NADH  kinase, an enzyme crucial for 
antioxidant defense, causes life-span  extension and DNA stability due to 
adaptive mechanisms in Podospora  anserine [235]. Finally, human 
subjects on a carbohydrate-depleted  diet (i.e., a ketogenic diet) show 
improved ROS defense capacity  presumably due to elevated oxidative 
metabolism [236].

Taken  together,  all  these  findings  provide  indirect  evidences
for the hypothesis that ROS production and subsequent induction of  ROS 
defense are essential contributors to longevity. To prove this  hypothesis, 

the previously described inhibitor of glycolysis, DOG, was  applied to C. 
elegans, resulting in a decrease in glucose availability  followed by a 
compensatory increase in respiration [23]. The increase  in oxygen 

consumption was associated with an increase in ROS  formation and a 
consequent induction of antioxidant enzyme activity,  finally leading to 

life-span extension [23]. Most importantly, simul-  taneous treatment with 
various antioxidants completely abolished  this life-span-extending effect 

of DOG, suggesting that an increase in  ROS formation is essential for 
CR-induced promotion of longevity [23].  These findings were 

corroborated by very recent studies that  examine the effect of CR in S. 
cerevisiae and Schizosaccharomyces  pombe [24,25,27]. Correspondingly, 
an increased mitochondrial  respiration and/or a subsequent enhanced 

ROS production after CR  were observed [24,25,27]. Hence, similar to the  
above-mentioned  observations in C. elegans, activation of stress response 
pathways as  well as induction of defense mechanisms has been discussed 

as  representing the underlying life-span-extending mechanisms  
[24,25,27,188–190]. It should be noted that endogenously produced  ROS 

presumably not only induce ROS defense enzymes, but also  increase 
activities of phase II response enzymes that protect from  damage beyond 

ROS. On a hypothetical basis this would explain the  clearly opposite 
effects of supplementation with exogenous antiox-  idants and/or genetic 

overexpression of antioxidant enzymes, on the  one hand, and 
endogenous response to endogenous ROS production  on the other hand. 

Future research will also have to investigate  whether response 
mechanisms to stressors such as endogenous ROS

may be less likely to be activated at higher age.

Physical 
exercise

Consistent with the concept of mitohormesis, glucose restriction  
leads to an increase in mitochondrial activity accompanied by an  
increase in respiration-derived  ROS  formation  that  serves  as  a  mild 
stressor (Fig. 1). This ROS signal is able to induce conserved  downstream 
processes (such as activation of specific oxidative stress-
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sensitive MAP-kinase cascades and redox-sensitive transcription  factors) 
that culminate in an overall adaptive response, represented  by an 
improvement in antioxidant capacity and finally longevity.  Cotreatment 
with antioxidants inhibits ROS signal transduction and  prevents the 
adaptive response. Thus, glucose-restriction-mediated  longevity is 
abolished.

Therefore, interventions that induce mitochondrial function seem  to 
be promising in regard to regulation of life expectancy. Accordingly,  
moderate physical activity, an intervention that is known to be health  
beneficial in a broad spectrum [120,121,237–239], is assumed  to  cause 
induction of mitochondrial metabolism and ROS production  [240–242]. 
Moreover, health-promoting effects were demonstrated to  be reduced if 
subjects exposed to physical activity were cotreated  with antioxidant 
supplements [186,243].

Conclusion
s

Taken together, the data summarized and discussed in this review  
support the conclusion that CR, glucose restriction, and moderate  
physical activity share, at least in part, common mechanistic features  that 
may influence the aging process, i.e., enhanced mitochondrial  activity and 
subsequently increased ROS formation that ultimately  induce an adaptive 
response (increased defense mechanisms and  improved stress 
resistance), which culminates in metabolic health  and extended 
longevity.
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