
WEBSOCKET

by Maksym Khudoliy



WEBSOCKET

WebSocket is a computer communication protocol (over TCP) that allows a persistent 
bi-directional network connection between a client (browser) and a server to be opened in real time

Unlike HTTP, in the WebSocket protocol, the browser does not need to constantly ask the server if 
there are new messages. It is enough to connect once to the server and wait for the server to send 
the message itself

Examples of tasks where you should consider using WebSocket:

• real time applications

• chat

• online games

• IoT applications

• trading platforms



WEBSOCKET

To start working with WebSocket, you need to create an object of type WebSocket, the parameter of 
which specifies the URL. URL string must begin with ws:// (no encryption) or wss:// (encrypted)

The interaction between client and server is based on an event system and message 
transmission:

• to send data to the server, the send(data) method is used, the parameters of which are the data 
to be sent

• the close() method is used to close the connection

• to receive data, the "message" event is used, into the handler of which an object of the 
MessageEvent type will be passed, the data property of which contains the transferred data

• the "error" event is used to handle errors

• after the connection is established, the "open" event is generated

• after the connection is closed, the "close" event is generated



WEBSOCKET

To demonstrate how WebSocket works, we will use the websocket.org site, which 
provides the simplest WebSocket server (wss://echo.websocket.org), it just returns the 
messages it receives

Let's create the following files:

• index.js – main script file

• index.html – Web page, only needed to include index.js



WEBSOCKET

index.js file:

const s = new WebSocket("wss://echo.websocket.org");

s.addEventListener("open", (e) => {

   console.log("connected");

   s.send("Hello WebSocket!");

   console.log("client -> server: Hello WebSocket!");

});

s.addEventListener("message", (e) => {

   console.log("client <- server:", e.data);

});



WEBSOCKET

s.addEventListener("close", (e) => {

   console.log("disconnected");

});

setTimeout(() => {

   s.send("Hello World!");

   console.log("client -> server: Hello World!");

}, 1000);

setTimeout(() => s.close(), 2000);



WEBSOCKET

We create an object of type WebSocket. Add a handler to the open event so that after the 
connection is established, immediately send a message to the server. Add a handler to the 
message event to receive messages from the server. Add a handler for the close event. 
With a slight delay, we send another message to the server and close the connection

After running the code, the browser console will display the following output:

connected

client -> server: Hello WebSocket!

client <- server: Hello WebSocket!

client -> server: Hello World!

client <- server: Hello World!

disconnected



SoftServe Confidential


