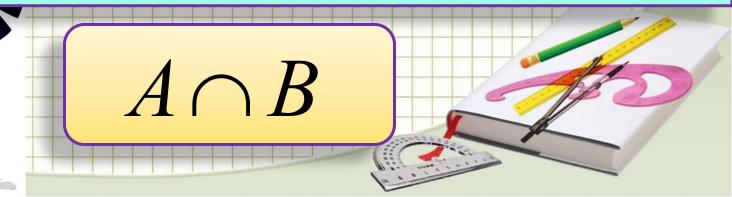


Объединением множеств А и В называют множество, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств.

$A \cup B$

Пересечением множеств A и В называют множество, состоящее из всех элементов, каждый из которых принадлежит и множеству A, и множеству D

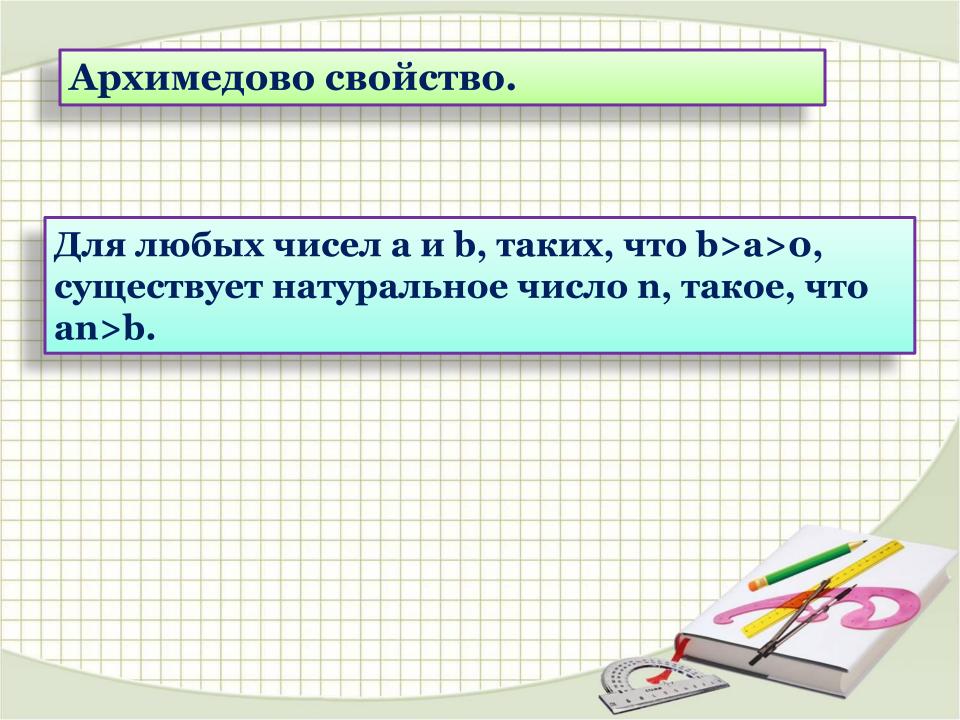


Свойства сложения и вычитания.

Nº	свойство	
1		
2		
3		
4		
5		
6		

Свойства умножения и деления.

Nº	свойство	
1		
2		
3		
4		
5		
6		
7		
8		
9		
9		



Свойство непрерывности действительных чисел.

Для любой системы отрезков $[a_1;b_1],[a_2;b_2], \mathbb{Z}$, $[a_n;b_n], \mathbb{Z}$ удовлетворяющей условиям :

- **1)** $a_1 \le a_2 \le \mathbb{Z} \le a_n \le a_{n+1} \le \mathbb{Z} \le b_{n+1} \le b_n \le \mathbb{Z} \le b_2 \le b_1$;
- $|b_n a_n| \to 0 \, npu \, n \to \infty,$

существует, и притом единственная, точка, принадлежащая всем отрезкам $[a_n;b_n]$.

Таблица числовых промежутков

Геометрическая модель	Обозначение	Название числового промежутка	Аналитическая модель
a	$(a; +\infty)$	Открытый луч	x > a
a	$[a; +\infty)$	Луч	x≥a
bx	(-∞; b)	Открытый луч	x < b
b	$(-\infty;b]$	Луч	<i>x</i> ≤ <i>b</i>
ab	(a; b)	Интервал	a < x < b
a b	[a; b]	Отрезок	$a \le x \le b$
ab	(a; b]	Полуинтервал	$a < x \le b$

Заполните таблицу

Геометрическая	Обозначение	Название	Аналитическая
модель		числового	модель
		промежутка	
2/// 2 X	[1; 3]	О ?зок	1≤?≤3
	[2?-∞)	? 4	x ? 2
2 ? 5 x	(?5)	И ? рвал	2 < x < 5
? -3 x	(-(?-3)	Открытый луч от – ∞ до – 3	x -3</td
-2 2 X	[1?2)	Пол ? тервал	-2≤?ε<2
-0////?////*x	$(2;+\infty)$	Открупый луч от 2 +∞	2?2

Опорный конспект

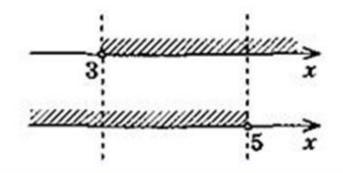
Пересечение и объединение промежутков

Пересечение

Рис. 1

промежутковПример 1. Решим систему неравенств

$$x > 3$$
,



- Решение. (3; 5) общая часть промежутков (3; → ∞) и (-∞; 5), (3; 5) - это **пересечение** промежутков (3; + ∞) и $(-\infty; 5)$ (решение системы).
- Ответ: $(3; + \infty) \cap (-\infty; 5) = (3; 5)$.

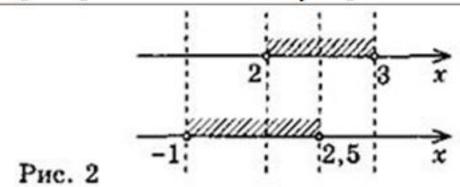
Опорный конспект

Пересечение и объединение промежутков

Объединение промежутков

Пример 2. Решим систему неравенств

$$\begin{bmatrix} 2 < x < 3, \\ -1 < x < 2,5 \end{bmatrix}$$
 (puc. 2).



- Решение. Промежуток (-1; 3) состоит из чисел, которые являются решением **хотя бы одного из неравенств** 2 < x < 3 или -1 < x < 2,5, поэтому является **объединением** этих промежутков (**решением совокупности**).
- Ответ: (2; 3) U (-1; 2,5) = (-1; 3).

