Формулы приведения

ЗАДАНИ Е

- 1. Повторяете с 3 по 5 слайд
- •2. Записать 6,7,8
- 3.Пример упрощения ,слайд №9
- 4.Решить №89
- •5. Сдаете на следующем уроке

В какой четверти находится угол ?

- 125°; 350°; 230°;185°;330°
- •725⁰; 72⁰;
- -800°

Определить знаки:

- •sin 135⁰;
- $-\sin(-257^0)$; $\sin 820^0$;
- $-\cos(-275^0);$
- • $\sin 117^0$; $\cos 385^0$;
- •tg 95°; ctg (-365°); ctg 78°

Превратить в градусы:

$$\frac{3\Pi}{2}; \frac{3\Pi}{4}; \frac{\Pi}{2}$$

$$\frac{7\Pi}{6}, \frac{5\Pi}{3}, \frac{2\Pi}{3}$$

Формулы

вида:

$$\sin(\frac{\pi n}{2} \pm \alpha)$$

$$\cos(\frac{\pi n}{2} \pm \alpha)$$

$$tg(\frac{\pi n}{2}\pm\alpha)$$

$$ctg(\frac{\pi n}{2} \pm \alpha)$$

Можно упростить, пользуясь правилом

Правило

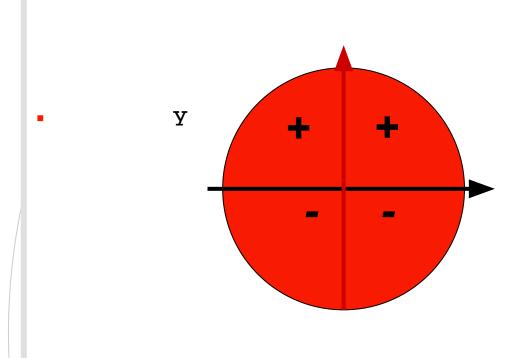
•1.Если в формуле содержится 90^0 или 270^{0} , функция меняется на «кофункцию»,синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс.

Если в формуле содержится 180^0 или 360^0 , то функция не меняется

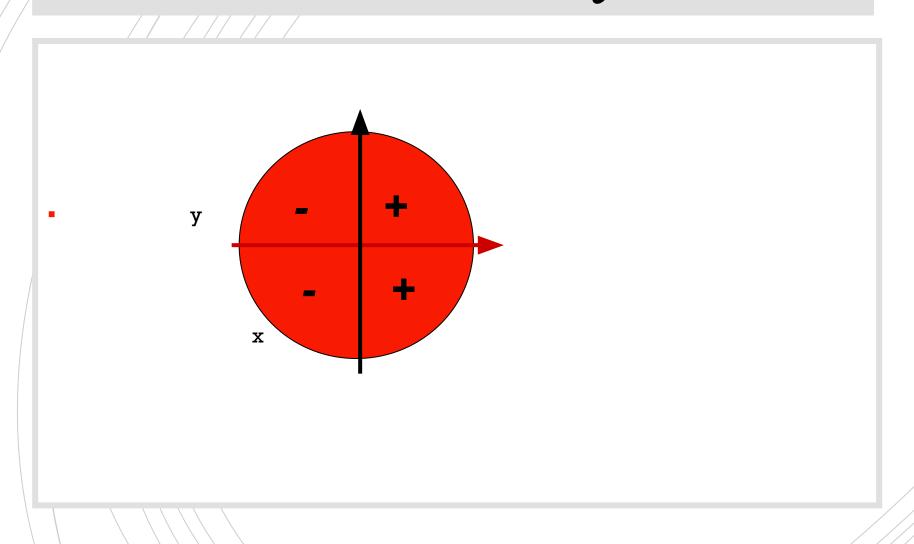
<u>አ</u>ጽጽጽጽጽጽጽጽጽጽጽጽጽጽ

ПРАВИЛ О

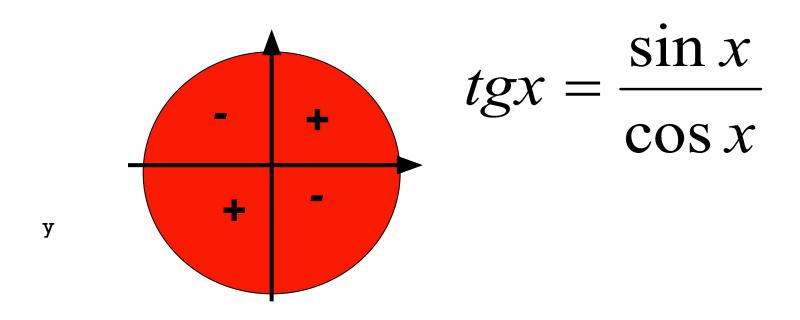
2. В правой части ставится тот знак , который имела бы левая часть при условии, что 0 $< \alpha < \Pi/2$


 $\cos (270^{0} + \alpha) = \sin \alpha$ В левой части имеем 270^{0} , по первому правилу меняем \cos на \sin . Знак определяем по левой части, а ставим его в правую.

270⁰ + α − это 4 четверть. В ней косинус(НЕ СИНУС) имеет знак плюс.Знаки на слайдах №11,12,13



 $tg (180^{0} - \alpha) = -tg \alpha$ В формуле 180 градусов. По первому правилу, тангенс не меняем. Четверть вторая. Знак тангенса минус. Ставим его в правую часть


Знаки синуса

Знаки косинуса

Знаки тангенса и котангенса

89. Замените тригонометрической функцией угла а:

a)
$$\sin\left(\frac{\pi}{2}-\alpha\right)$$
; π) $\cos\left(2\pi-\alpha\right)$; π) $\cot\left(360^{\circ}-\alpha\right)$;

B)
$$\operatorname{tg}\left(\frac{3\pi}{2}-\alpha\right)$$
; $\operatorname{\mathfrak{R}}$) $\operatorname{tg}\left(180^{\circ}-\alpha\right)$; $\operatorname{\mathfrak{I}}$) $\sin\left(270^{\circ}-\alpha\right)$;

r)
$$ctg(\pi + \alpha)$$
; 3) $sin(180^{\circ} + \alpha)$; m) $tg(270^{\circ} + \alpha)$.

90. Приведите к тригонометрической функции угла α:

a)
$$\sin\left(\frac{\pi}{2}+\alpha\right)$$
; r) $\cos\left(2\pi+\alpha\right)$; \mathbf{x}) $\sin\left(360^{\circ}+\alpha\right)$;

6)
$$\cos\left(\frac{3\pi}{2}-\alpha\right)$$
; π $\cot\left(\pi-\alpha\right)$; 3) $\cos\left(90^{\circ}+\alpha\right)$;

B)
$$tg(\pi + \alpha)$$
; e) $sin(\pi + \alpha)$; u) $tg(90^{\circ} - \alpha)$.

98. Упростите выражение:

a)
$$\sin\left(\alpha - \frac{\pi}{2}\right)$$
; b) $\cot \alpha - 360^{\circ}$);

6) cos
$$(\alpha - \pi)$$
; r) tg $(-\alpha + 270^{\circ})$.

99. Упростите выражение:

a)
$$\sin\left(\alpha - \frac{3\pi}{2}\right)$$
; 6) $\cos\left(\alpha - \frac{3\pi}{2}\right)$; B) $tg(\alpha - 2\pi)$.

100. Преобразуйте выражение:

a)
$$\sin^2(\pi+\alpha)$$
; b) $\cos^2(\frac{3\pi}{2}-\alpha)$;

6)
$$\operatorname{tg}^{2}\left(\frac{\pi}{2}+\alpha\right)$$
; r) $\operatorname{ctg}^{2}\left(2\pi-\alpha\right)$.

101. Докажите, что если A, B и C — углы треугольника, то

$$\sin\frac{A+B}{2} = \cos\frac{C}{2}.$$

102. Докажите, что если $\alpha + \beta + \gamma = 180^{\circ}$, то

$$\operatorname{tg}\frac{\alpha+\beta}{2} = \operatorname{ctg}\frac{\gamma}{2}$$
.

103. Упростите выражение:

a)
$$\sin(90^{\circ} - \alpha) + \cos(180^{\circ} + \alpha) + tg(270^{\circ} + \alpha) + ctg(360^{\circ} + \alpha)$$
;

6)
$$\sin\left(\frac{\pi}{2}+\alpha\right)-\cos\left(\alpha-\pi\right)+\operatorname{tg}\left(\pi-\alpha\right)+\operatorname{etg}\left(\frac{5\pi}{2}-\alpha\right)$$
.