Продолжение классификации

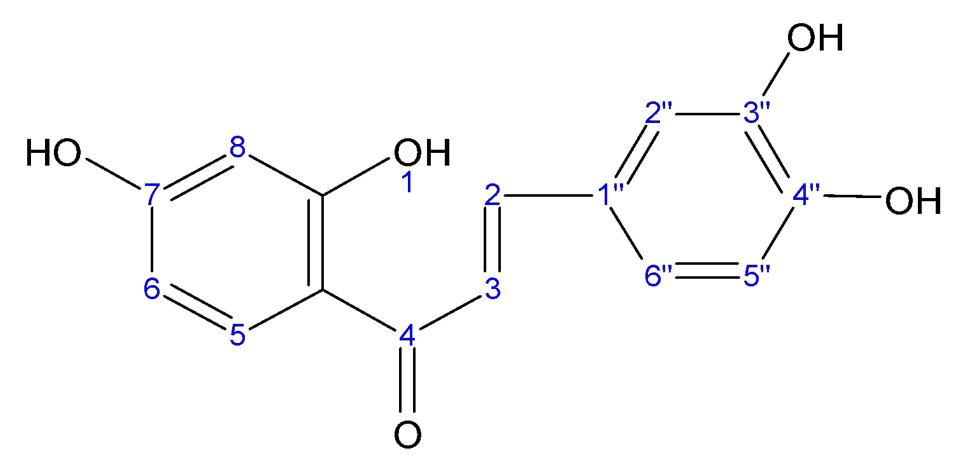
- 2. Флавонолы флавон-3-олы
 - Гликозиды кверцетина:

• Рутин – 3-рутинозид (глюкорамнозид) кверцетина содержится в траве фиалки, пустырника, горца перечного, зверобоя, в гречихе, плодах и бутонах софоры японской, плодах аронии.

- 2. Флавонолы флавон-3-олы
 - Гликозиды кверцетина:

• Авикулярин – 3-арабинозид кверцетина содержится в траве горца птичьего.

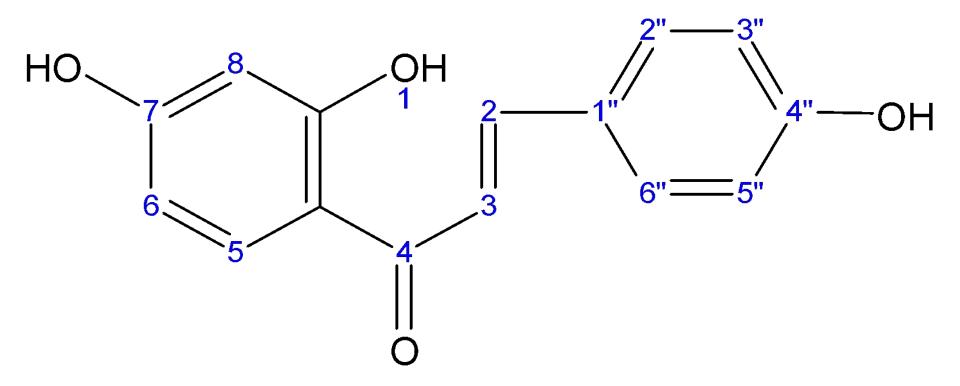
- 2. Флавонолы флавон-3-олы
 - Гликозиды кверцетина:


 Гиперозид – 3-галактозид кверцетина содержится в траве горца почечуйного, зверобоя, цветках и плодах боярышника.

- 2. Флавонолы флавон-3-олы
 - Гликозиды кверцетина:
- Кверцитрин 3-рамнозид кверцетина содержится в траве горца птичьего, цветках боярышника.

1.3. Эуфлавоноиды с разорванным гетероциклом

Халконы и дигидрохалконы


• а) бутеин – 2,4,3',4'-тетраоксихалкон содержится в траве череды в свободном виде и в виде гликозидов.

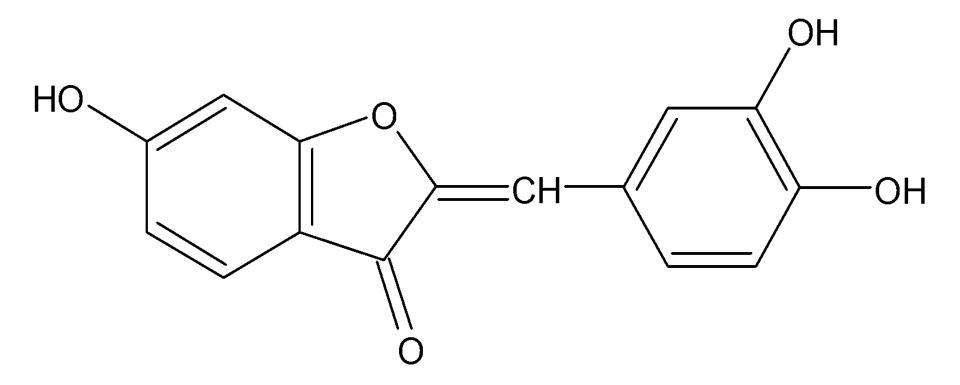
бутеин

- Халконы и дигидрохалконы

• б) изоликвиритигенин – 2,4,4'триоксихалкон содержится в корнях солодки.

изоликвиритигенин

1.4. Эуфлавоноиды с 5-членным гетероциклом

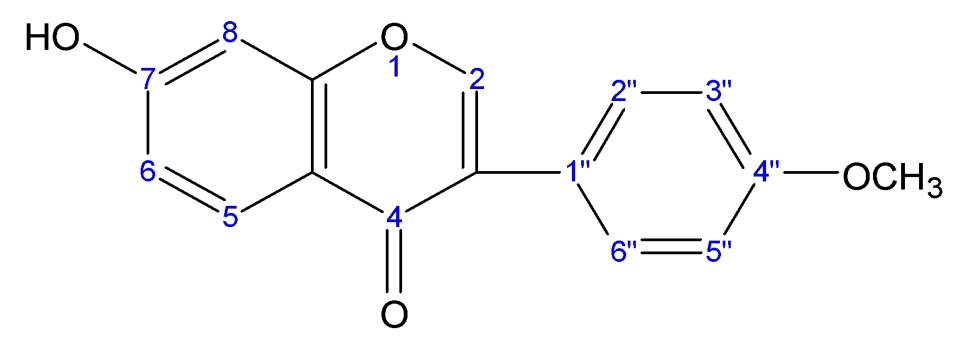

Ауроны

• Ауроны имеют разнообразную структуру.

• Они встречаются в растениях семейства астровых.

• В растениях присутствуют в форме гликозидов.

• Сальфуретин и его 7-гликозид содержатся в траве череды.

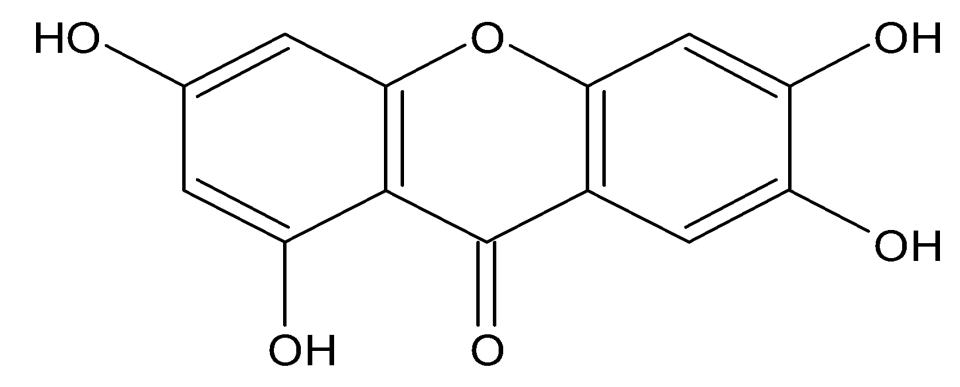

сальфуретин

2. Изофлавоноиды

• Изофлавоноиды в растении встречаются как производные изофлавона.

• Генистеин – 5,7,4'-триоксиизофлавон и даидзеин – 5,7,3',4'-тетраоксиизофлавон содержатся в створках фасоли и других растений сем. Бобовые.

 Формононетин – 7,4'-метоксиизофлавон и его 7-гликозид ононин содержатся в корнях стальника полевого.



формононетин

4. Другие классы флавоноидов

1. Ксантоны

• Алпизарин и его 6-С-гликозид мангиферин содержатся в траве золототысячника и копеечника альпийского.

алпизарин

2. Флаволигнаны –

• силибин, силимарин содержатся в плодах расторопши пятнистой.

5. Физические и химические свойства флавоноидов

5.1. Физические свойства

Флавоноиды – аморфные или кристаллические соединения:

- <u>бесцветные</u> (изофлавоны, катехины, лейкоантоцианидины, флавононолы),
- желтые (флавоны, флавонолы, флаваноны) и <u>бледно-желтые</u> (флавоны, ксантоны),
- <u>оранжевые, ярко-желтые</u> (халконы и ауроны),
- окрашенные в <u>красный, оранжевый, розовый, фуксиновый или синий</u> цвета в зависимости от реакции среды (антоцианидины).

- Гликозиды, катехины и лейкоантоцианидины растворимы в воде, этаноле, метаноле различной концентрации, не растворимы в органических растворителях.
- Свободные агликоны, за исключением катехинов и лейкоантоцианидинов не растворимы в воде, но растворимы в этаноле, метаноле и других органических растворителях.
- Все флавоноиды растворимы в пиридине, ДМФА, щелочах.

- Без запаха, горького вкуса, с определенной температурой плавления (гликозиды – 100-180°С, агликоны до 300°С).
- Обладают оптической активностью.
- Имеют характерные УФ-спектры поглощения с 2 максимумами, а также ИК-спектры.

5.2. Химические свойства

• 1. Гликозиды флавоноидов подвергаются кислотному и ферментативному гидролизу до агликонов и сахаров.

• О-гликозиды гидролизуются легко, С-гликозиды только в жестких условиях смесью Килиани (конц. хлороводородная и уксусная кислоты).

- 2. Наличие колец А и В способствует:
- Образованию комплексных соединений с солями металлов.
- С солями железа в зависимости от количества гидроксильных групп комплексные соединения окрашиваются в зеленый, синий до коричневого цвета.
- С солями алюминия наблюдается желтая окраска или желто-зеленая флюоресценция.
- Реакции азосочетания с солями диазония с образованием азокрасителя.

• 3. Флавоноиды с пироновым циклом (флавоны и флавонолы) способны:

 Восстанавливаться атомарным водородом в кислой среде до антоцианидинов.

• Растворяться в щелочах с образованием растворимых в воде фенолятов.

• 4. Флавоноиды с пирановым циклом (катехины, лейкоантоцианидины) способны легко окисляться до производных флавона и флавонола.

• 5. Флавоноиды при сплавлении в жестких условиях со щелочью распадаются на составные части, что используется при установлении структуры.

6. Оценка качества сырья. Методы анализа

6.1. Качественный анализ

Цветные реакции

(химические методы)

Проба Синода (цианидиновая проба)

- Реакция основана на способности окисленных форм флавоноидов восстанавливаться атомарным водородом в кислой среде, полученным по реакции взаимодействия кислоты с металлическим магнием или цинком до антоцианидинов (проба Синода).
- В кислой среде образуются оксониевые соли, окраска которых зависит от структуры флавоноида.

- Флавоны дают оранжево-красные, флавонолы от розовой до малиновой окраски соли.
- Антоцианидины, халконы и ауроны в кислой среде дают сразу дают окрашенные оксониевые соли.
- ГФ бузины черной цветки, кукурузы столбики с рыльцами, рябины обыкновенной плоды.

$$\bigcap_{\mathsf{OR}} \bigcap_{\mathsf{OR}} \frac{\mathsf{Mg/HCl}}{\mathsf{HO}} \bigcap_{\mathsf{HO}} \bigcap_{\mathsf{HO}} \frac{\mathsf{HCl}}{\mathsf{OR}} \left[\bigcap_{\mathsf{OH}} \bigcap_{$$

Проба Брианта

 Проводится в случае положительной цианидиновой пробы.

 Реакция дает возможность сделать заключение о присутствии в сырье гликозидов и агликонов.

- В пробирку, где проводилась проба Синода, добавляют октанол и встряхивают:
- Если окраска перешла в октанол, то в сырье содержатся только агликоны, растворимые в октаноле.
 - Если окраска осталась в водной фазе, то в сырье содержатся только гликозиды, растворимые в воде.
 - Если окрасились оба слоя, то в сырье содержатся и агликоны, и гликозиды.

Реакция с парами аммиака или водным раствором натрия карбоната

Нуклеофильность карбонильной группы в реакциях замещения у флавонов и флавонов понижена, однако взаимодействие с аммиаком проходит без нагревания, при этом образуются имины желтого цвета:

УФ, 300 нм	Изменение цвета	Кроме изофлавонов
Видимый свет	Желтый	Флавоны, флавононы, флавонолы
	Оранжево- красный	Халконы, ауроны

Реакция с 1-5% спиртовым раствором алюминия хлорида

 Образуются хелатные комплексы за счет водородных связей, возникающих между карбонильной и оксигруппой.

• ГФ – сушеницы топяной трава.

1-3% p-р AlCl ₃ в спирте	Видимая область	Желтый	Флавоны, флавонолы, халконы, ауроны
	УФ, 254 нм	Желто- коричневый	Флавоны
		Желтый	Халконы
		Желто-зеленый	Флавонолы
		Зеленый	Ауроны
5% p-p AlCl ₃		Красный	Халконы
в спирте и пары NH ₃	254 нм	Коричнево- желтый	Изофлавоны
		Оранжевый	Ауроны

Реакция с 1-10% раствором основного ацетата свинца

Антоцианы дают синий аморфный осадок, частично растворимый в кислотах, при этом раствор приобретает розовую или красную окраску (плоды черники).

ацетата	Красный осадок	Флавонолы
	Желтый	Флавоны
10% р-р ацетата свинца	Ярко-желтый	Флавоны, халконы, ауроны, флавонолы с диоксигруппировкой
	Красный, синий	Антоцианы

Реакция с 10% спиртовым раствором натрия гидроксида

 Антоцианы образуют соли оливковозеленого цвета (плоды черники).

Реакция азосочетания с диазосоединениями

 Образуются азокрасители желтого, оранжевого, красного, вишневокрасного, коричневого цветов.

С молибдатом натрия

Желтый

Флавоноиды с диоксигруппировкой

Реакция Мартини-Беттоло

P-р насыщ. SBCl ₅	Оранжевый или желтый	Флавоны, флавонолы
B CCl ₄	Желтый	Флаваноны, изофлавоны
	Красный или	Халконы
	красно- фиолетовый	

Реакция Хорхаммера и Миллера

2% р-р	Видимая	Желтый	5-оксифлавоны,
хлорокиси	область		5-окси-флавонолы
циркония в метаноле	УФ, 254 нм	Зеленый	5-оксифлавонолы

С растворами кислот

10% р-р щавелевой к-ты в 50% водном ацетоне	Яркий осадок	Антоцианы
HCl 1% p-р (хмеля соплодия	Желтый	Флавоны, флавонолы
ГФ) или Н ₂ SO ₄	Желто- коричневый до красно- коричневого	Изофлавоны
	красное	лейкоантоциан
	окрашивание	ы

С растворами борной кислоты

Ректив Димрота (нас. р-р борной кислоты в уксусном ангидриде), 100-110°C	УФ, 254 нм	Желтый, оранжевый	5- оксифлавонол ы и их метиловые эфиры
3-5% водн. р- ры борной кислоты	Видимая область	Белый или желтоватый осадок	Все флавоноиды
Р-р борной кислоты в ацетоне	Видимая область	Желтый	5-окси- флавоны

Госсипетиновая проба

2% p-p	Красный	5,8-диоксизамещенные
п-бензохинона		флавоноиды
в спирте		

Реакция с реактивом Вильсона Реакция отличия флавоноидов от фуранохромонов. Комплексы не разрушаются лимонной кислотой.

0,5 г борной к-ты+	Видимая область	Ярко- желтый	5-оксифлавоны, 5-оксифлавонолы
0,5 г лимонной к-ты в 20 мл	УФ	Желто- зеленый	и их метиловые эфиры
безводного ацетона, 100-105°C	УФ	Желтый	Дигидрохалконы