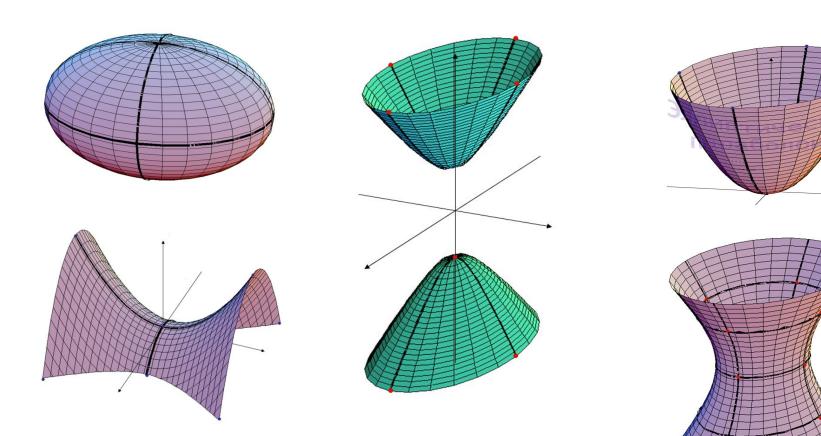
Поверхности второго порядка 1. Классификация 2. Исследование формы



Поверхности второго порядка

Классификация

Алгебраическое описание

Определение. Уравнением второго порядка от переменных x_1, \ldots, x_n называется уравнение вида

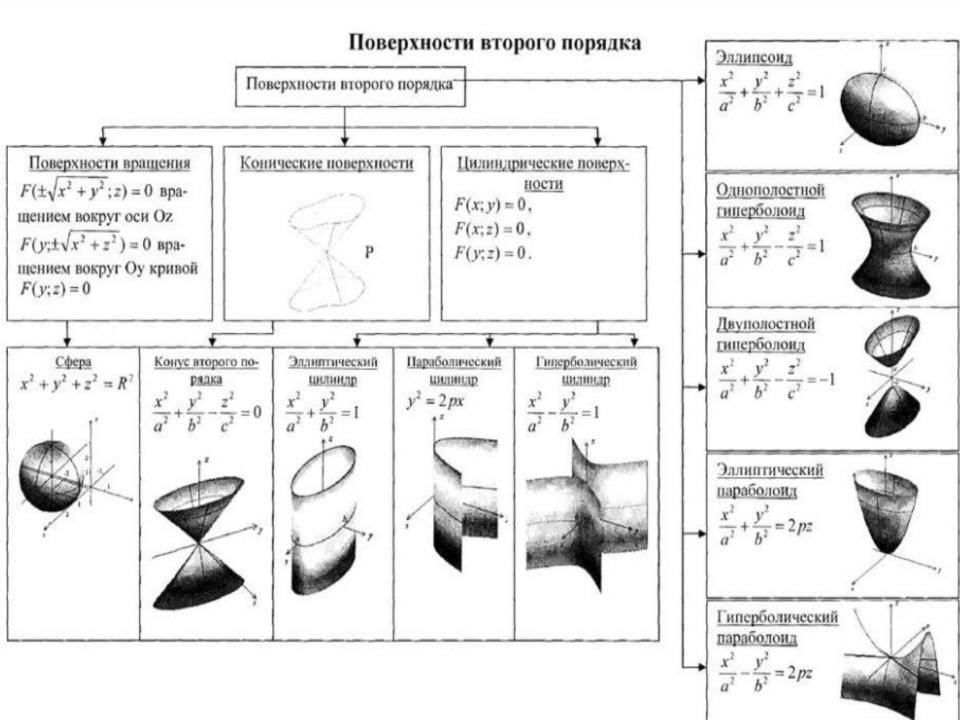
$$\sum_{1 \leqslant i \leqslant j \leqslant n} \alpha_{ij} x_i x_j + \sum_{i=1}^n \alpha_i x_i + \alpha_0 = 0, \quad (1)$$

где α_{ij} и $\alpha_k \in \mathbb{R}$ для всех i, j, k, и хоть одно из чисел α_{ij} отлично от нуля.

Слагаемое $\sum\limits_{1\leqslant i\leqslant j\leqslant n} \alpha_{ij}x_ix_j$ называется квадратичной частью уравнения (), а слагаемое $\sum\limits_{i=1}^n \alpha_ix_i + \alpha_0$ — его линейной частью.

ГМТ на плоскости, задаваемые одним уравнением второго порядка <u>с двумя</u> <u>переменными</u>

$$\begin{split} \frac{x^2}{a^2} + \frac{y^2}{b^2} &= 1, & \text{∂e $a > 0, $b > 0, $a \geqslant b$}; \\ \frac{x^2}{a^2} - \frac{y^2}{b^2} &= 1, & \text{∂e $a > 0, $b > 0;} \\ y^2 &= 2px, & \text{∂e $p > 0;} \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} &= -1, & \text{∂e $a > 0, $b > 0, $a \geqslant b$}; \\ \frac{x^2}{a^2} - \frac{y^2}{b^2} &= 0, & \text{∂e $a > 0, $b > 0, $a \geqslant b$}; \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} &= 0, & \text{∂e $a > 0, $b > 0, $a \geqslant b$}; \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} &= 0, & \text{∂e $a > 0, $b > 0, $a \geqslant b$}; \\ \frac{x^2}{a^2} &= 1, & \text{∂e $a > 0;} \\ x^2 &= 0; \\ \frac{x^2}{a^2} &= -1, & \text{∂e $a > 0.} \end{split}$$

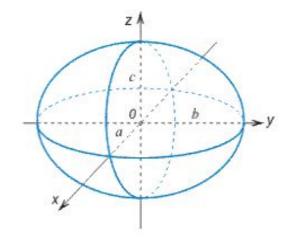


Фигуры вращения, эллипсоиды

Эллипсоид

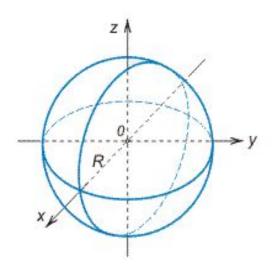
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

а, b, c — полуоси



Сфера (частный случай эллипсоида)

$$x^2 + y^2 + z^2 = R^2$$



Гиперболоиды: Однополостный гиперболоид вращения

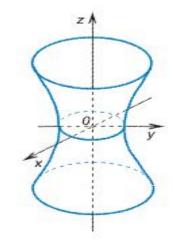
может

быть получен вращением гиперболы вокруг её мнимой оси, двуполостный — вокруг действительной.

Однополостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

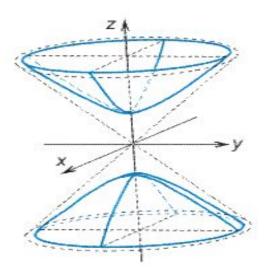
с — действительная полуось, а и b — мнимые полуоси



Двуполостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

с — действительная полуось, а и b — мнимые полуоси

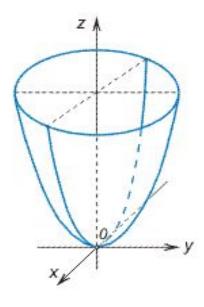


Параболоиды
 Эллиптический параболоид

если a=b - <u>эллиптический параболоид</u> представляет собой поверхность вращения, образованную вращением параболы вокруг её оси симметрии.

Эллиптический параболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$$

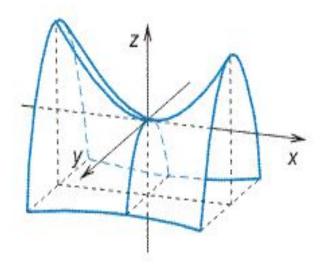


Параболоиды

<u>Гиперболический параболоид</u> может быть образован движением параболы, ветви которой направлены вниз, по параболе, ветви которой направлены вверх

Гиперболический параболоид

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$$

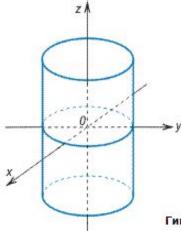


Цилиндрическая поверхность, цилиндры

Эллиптический цилиндр

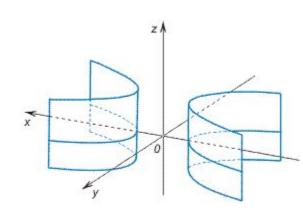
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

а и b — полуоси



Гиперболический цилиндр

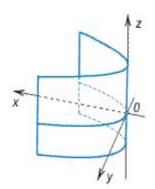
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{1}{a^2}$$



Параболический цилиндр

$$y^2 = 2px$$

р — фокальный параметр

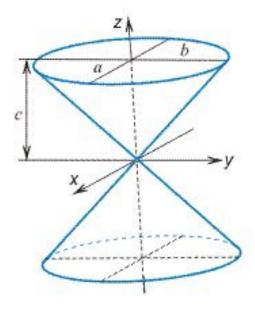


Коническая поверхность, конус

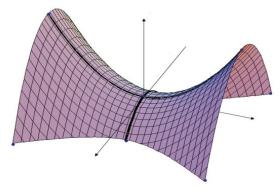
Конус

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Вершина конуса в начале координат, направляющая кривая — эллипс с полуосями a и b, плоскость которого находится на расстоянии c от начала координат



	Признаки вида						Название поверхности
Центральные поверхности	δ≠0	- Z Z	$\begin{cases} \tau_2 > 0, \\ \tau_1 \cdot \delta > 0 \end{cases}$ \updownarrow $\lambda_1, \ \lambda_2, \ \lambda_3$ одного знака		Δ < 0		Эллипсоид
		Эллипти-			Δ > 0		Мнимый эллипсоид
		Je vec			Δ = 0		Мнимый конус
		Гиперболи- ческий тип	$\begin{bmatrix} \tau_2 \leq 0, \\ \tau_1 \cdot \delta \leq 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		Δ	> 0	Однополостный гиперболоид
					Δ < 0		Двуполостный гиперболоид
					Δ = 0		Конус
Нецентральные поверхности	$\delta = 0$	Параболический тип	Δ < 0				Эллиптический параболоид
			Δ > 0				Гиперболический параболоид
			Δ = 0	$ au_{2} > 0$	$\tau_1 \cdot \kappa_2 < 0$		Эллиптический цилиндр
					$\tau_1 \cdot \kappa_2 > 0$		Мнимый эллиптический цилиндр
					$\kappa_2 = 0$		Пара мнимых пересекающихся плоскостей
				τ ₂ < 0	$\kappa_2 \neq 0$		Гиперболический цилиндр
					$\kappa_2 = 0$		Пара пересекающихся плоскостей
					$\kappa_2 \neq 0$		Параболический цилиндр
				$\tau_2 = 0$	$\kappa_2 = 0$	$\kappa_1 < 0$	Пара параллельных плоскостей
						$\kappa_1 > 0$	Пара мнимых параллельных плоскостей
						$\kappa_1 = 0$	Пара совпадающих плоскостей



Поверхности второго порядка

Исследование формы поверхностей второго порядка по их каноническим уравнениям методом параллельных сечений

Эллипсоид $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

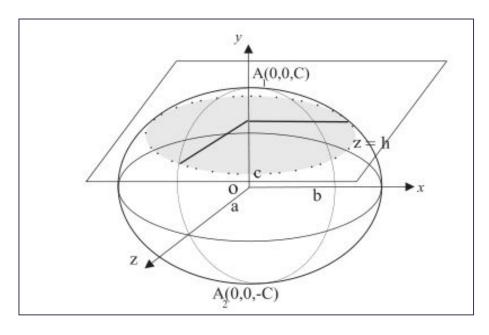
(a > 0, b > 0, c > 0).

Рассечем поверхность плоскостями $z = h(|h| \le c)$. Получим кривые с уравнениями

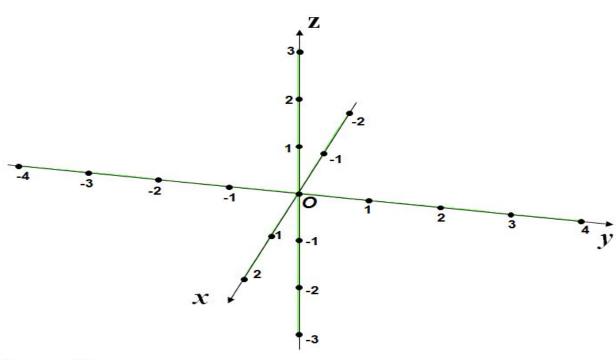
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2}, \quad z = h.$$

Это эллипс с полуосями h = 0 эллипс имеет наибольшие полуоси. Когда |h| растет, то полуоси эллипсов уменьшаются и при |h| = c эллипсы вырождаются в точки $A_1(0;0;c)$ и $A_2(0;0;-c)$

Эллипсоид заключен прямоугольном параллелепипеде со сторонами 2a,2b,2c.



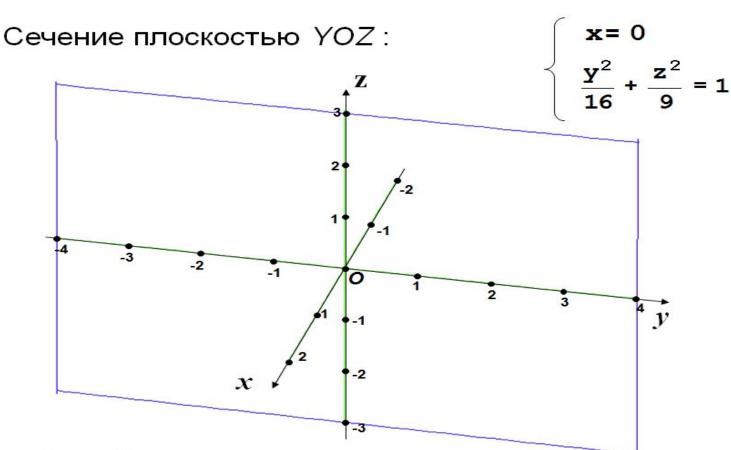
$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$



$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$

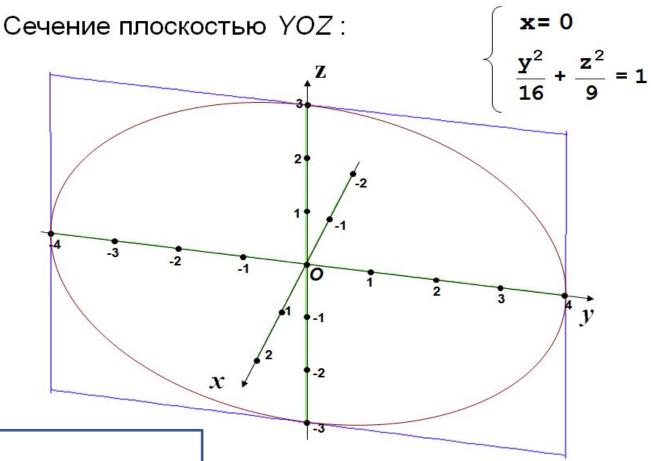
$$a=2;$$
 $b=4;$ $c=3$

$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$



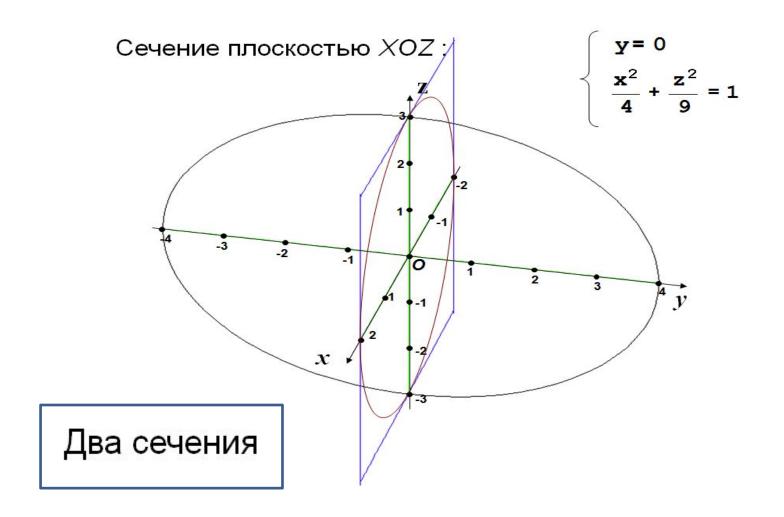
$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$

$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$

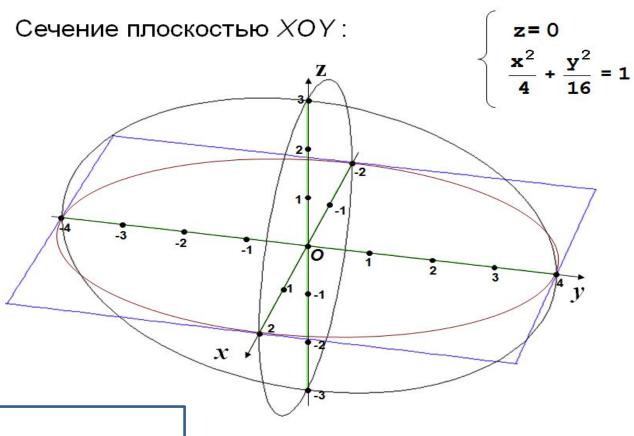


Первое сечение

$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$



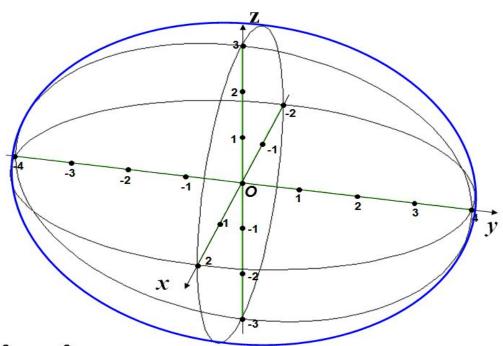
$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$



Три сечения

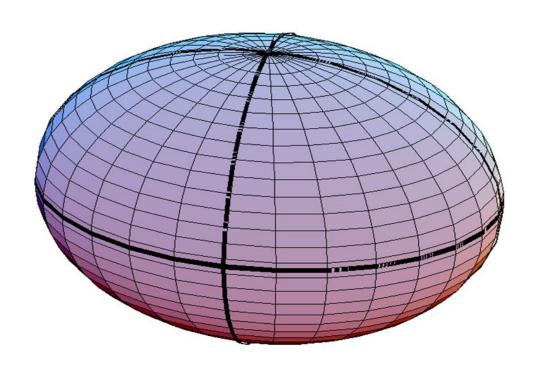
$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$

Все сечения:



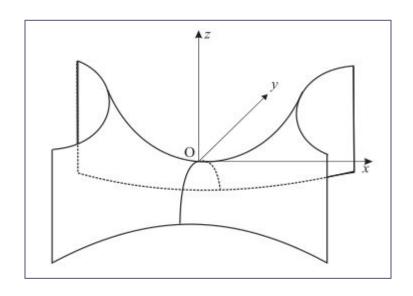
$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$

$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$



Гиперболический параболоид $z = \frac{x^2}{a^2} - \frac{y^2}{h^2}$

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}.$$



Сечение плоскостью x = 0 дает в плоскости yOz параболу $z = -\frac{y^2}{12}$, ветви которой направлены вниз. Сечение координатной плоскостью z = 0 есть пара пересекающихся прямых

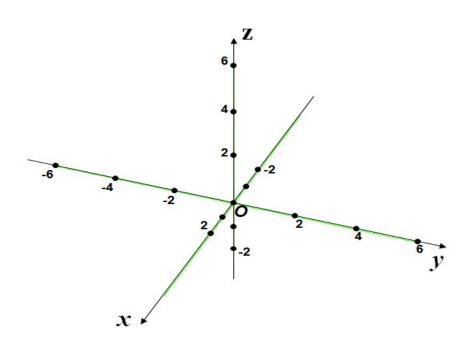
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0 \quad \left(y = \pm \frac{b}{a} x \right).$$

Сечение плоскостями z = h дает гиперболы с уравнениями

$$\frac{x^2}{ha^2} - \frac{y^2}{hb^2} = 1,$$

причем при h > 0 ветви расположены вдоль оси Ox, а при h < 0ветви расположены вдоль оси Oy.

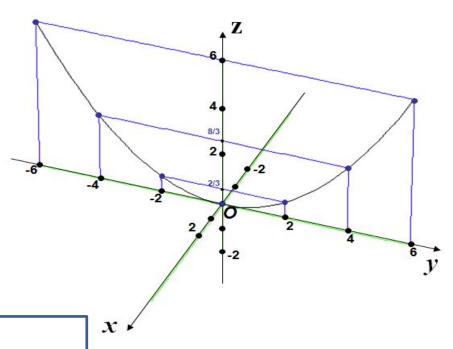
$$-\frac{x^2}{4} + \frac{y^2}{6} = z$$



_

$$-\frac{x^2}{4} + \frac{y^2}{6} = z$$

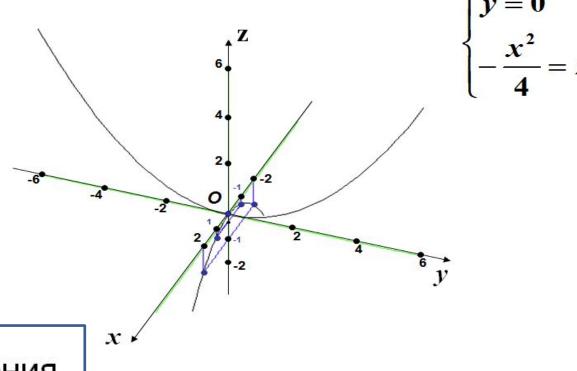
Сечение плоскостью YOZ:



$$\begin{cases} x = 0 \\ \frac{y^2}{6} = z \end{cases}$$

Первое сечение

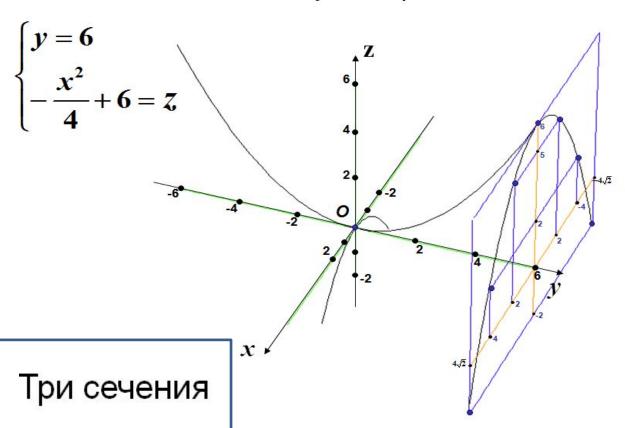
$$-\frac{x^2}{4} + \frac{y^2}{6} = z$$



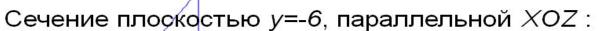
Два сечения

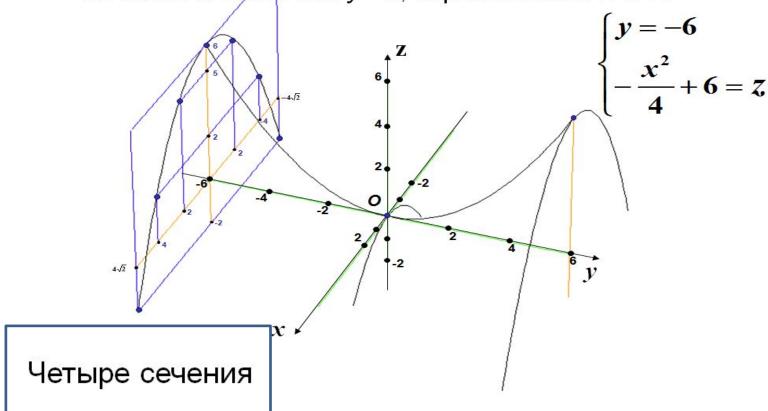
$$-\frac{x^2}{4} + \frac{y^2}{6} = z$$

Сечение плоскостью y=6, параллельной XOZ:



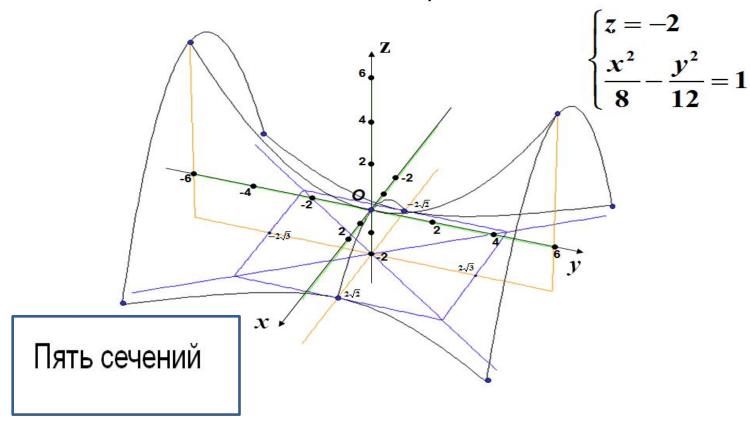
$$-\frac{x^2}{4} + \frac{y^2}{6} = z$$

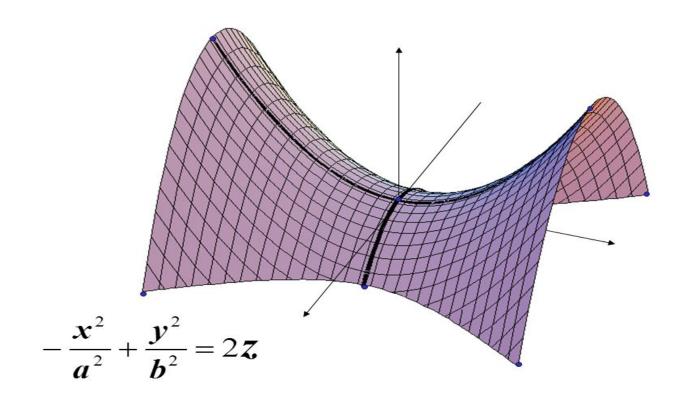




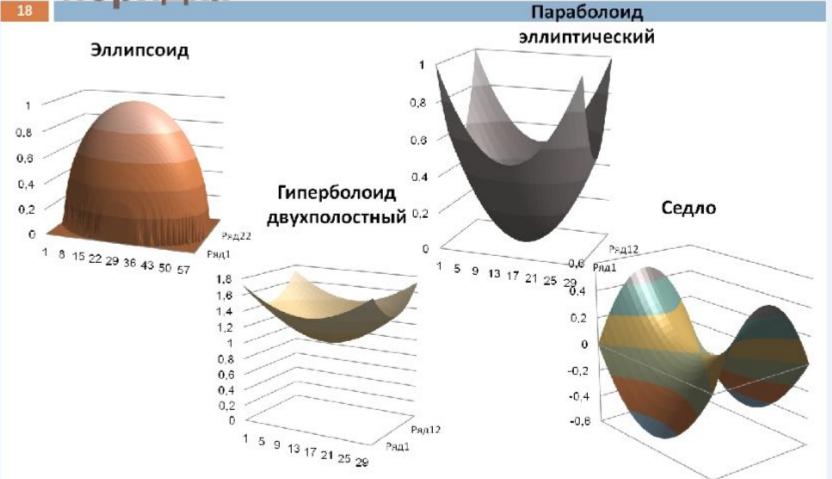
$$-\frac{x^2}{4} + \frac{y^2}{6} = z$$

Сечение плоскостью z=-2, параллельной XOY:





Графики поверхностей второго порядка



Приложения

Часто используется свойство <u>параболоида вращения</u> собирать пучок лучей, параллельный главной оси, в одну точку — фокус, или, наоборот, формировать параллельный пучок излучения от находящегося в фокусе источника. На этом принципе основана работа параболических <u>антенн</u>, <u>телескопов-рефлекторов</u> с параболическим зеркалом, <u>прожекторов</u>, автомобильных фар и т. д.

Свойство двуполостного гиперболоида вращения отражать лучи, направленные в один из фокусов, в другой фокус, используется в телескопах системы Кассегрена и в антеннах Кассегрена.

http://www.youtube.com/watch?v=1jigfFYbXc8