МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

«Исследование динамики итерирования полиномов второй степени и кусочно-линейных функций»

Выполнил: Коньков Павел Владимирович Магистрант 2 курса направления 01.04.02 Прикладная математика и информатика

В настоящее время нелинейная динамика интенсивно развивается и находит приложение в разных отраслях знаний от лингвистики до нанотехнологий. В настоящей работе рассматривается два семейства нелинейных функций, порождаемых квадратным двучленом и тентообразной функцией.

Цель, объект и предмет исследования

Цель — исследование динамики итерирования логистической и тентообразной функций.

Объект исследования – нелинейная динамика.

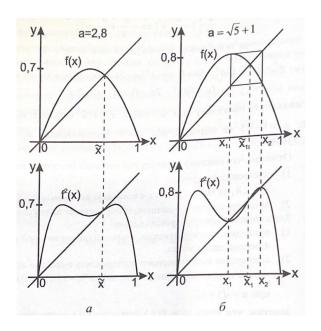
Предмет исследования — сравнение динамик итерированных логистической и тентообразных функций.

- 1. Адаптированы алгоритмы вычисления константы Фейгенбаума для логистической функции и тентообразной функции
- 2.Выявлена связь между кусочно-линейной функцией и множеством Кантора
- 3. Разботано многоэтапное математико-информационное задание

Задачи исследования:

- 1.Исследование орбит точек логистической и тентообразной функций
- 2. Разработать алгоритм и написать программу итерирования, вычисления констант Фейгенбаума, для логистической и тентообразной функций различных средах
- 3. Разработать многоэтапное математико-информационное задание

Практическая значимость

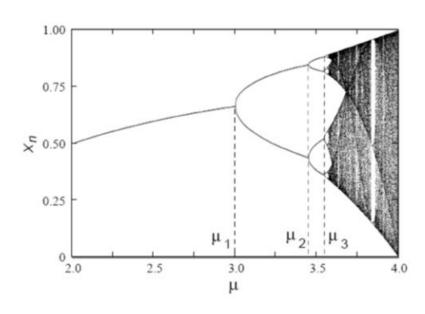

Практическая значимость работы заключается в том, что результаты исследования могут быть использованы при изучениях нелинейных отображений и построения математических моделей.

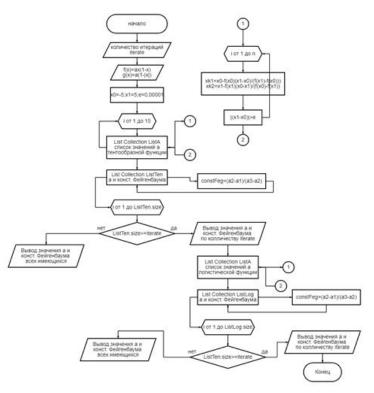
Переход к хаосу логистической функции

На данном этапе был подробно разобран переход к хаосу логистической функции. В нем было выяснено, что при увеличении значения а будет происходить бифуркация в орбиту длиной периода 2. Тем самым мы увидим удвоение периода у данной функции.

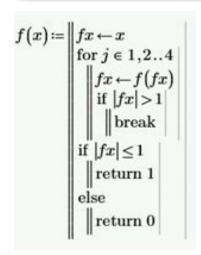
Символическая динамика логистической функции

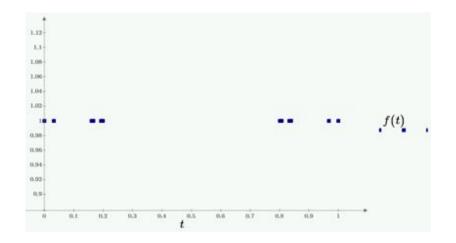
На данном этапе было разобрано понятие символической динамики.


Из чего стало понятно, что это полезный метод для понимания куда попадет следующая точка x_{n+1} после выполнения итераций: слева от максимума (центра) (L), или справа от максимума (R), либо в максимум функции (C), где под максимумом понимается глобальный максимум функции f(x)=a(1-x)x на отрезке [0;1].


Вычисление констант Фейгенбаума

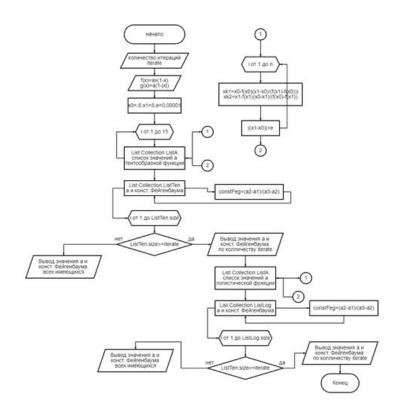
На данном этапе был разработан алгоритм и написана программа итерирования, вычисления констант Фейгенбаума, для логистической функции.


Построение множества Кантора для тентообразной функции



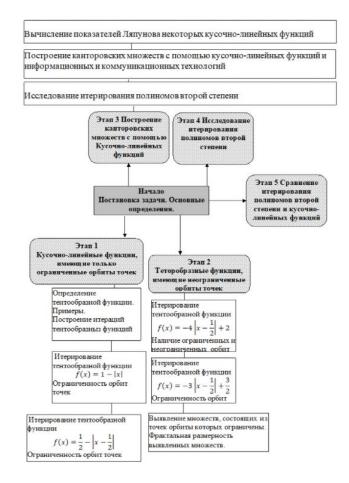
На данном этапе был построен алгоритм фрактальных множеств тентообразной функции f(x), каждое из которых является множеством Кантора. Алгоритм был реализован в среде MathCad.

Суть данного алгоритма в том, что рассматривается точка $x \in [0; 1]$ и ее сотая итерация $f^{(100)}(x)$. Если $|f^{(100)}(x)| < M$ то мы закрашиваем x в синий цвет и рассматриваем другую точку x+h. Множество закрашенное в синий цвет и даст нам множество Кантора.


Вычисление констант Фейгенбаума

На данном этапе был разработан алгоритм и написана программа итерирования, вычисления констант Фейгенбаума, для тентообразной функции.

```
Введите колличество итераций:
----Тентообразная функция-----
a2 = 1.5128763968642964 d2= -
a3 = 1.4655712319324776 d3= -
a6 = 1.4215733358946445 d6= 1.8823289714639724
a9 = 1.4151785370713572 d9= 1.9582642958409768
a10 = 1.4146985895307687 d10= 1.9745085171251993
all = 1.4144568019296597 dll= 1.9849964943914615
a12 = 1.4143353858340826 d12= 1.991396609812017
a14 = 1.4142440618575427 d14= 1.9973132826068467
a15 = 1.4142288163077354 d14= 1.998524995737476
----Логистическая функция-----
a2 = 3.4985616993277016 d2= -
a3 = 3.554640862768825 d3= -
a4 = 3.5666673798562685 d4= 4.680770998010699
a6 = 3.5697952937499444 d6= 4.668953740971062
a7 = 3.5699134654223483 d7= 4.669157181325133
a8 = 3.5699387742333055 d8= 4.669191002445335
a9 = 3.569944194608065 d9= 4.669199470750131
a10 = 3.5699453554864684 d10= 4.669201134519426
a11 = 3.5699456041110786 d11= 4.669201502378345
a12 = 3.5699456573588564 d12= 4.669201622547016
a13 = 3.5699456687629 d13= 4.669201568885961
```



Многоэтапное математико-информационное задание

На данном этапе было разработано многоэтапное математико-информационное задание по исследуемой теме. Оно состоит из пяти этапов. Данное ММИЗ служит хорошим материалом для изучения данной темы и развития креативности студентов.

