Факторный анализ

Пример факторного анализа

Пример 1.1. Влияние внутреннего валового продукта (ВВП) на социально-демографические показатели (европейские страны, 2008 г.)

Переменные:

- 1. Медианный возраст населения страны.
- 2. Рождаемость (число родившихся на 1000 жителей).
- 3. Смертность (число умерших на 1000 жителей).
- Естественный прирост (разность рождаемости и смертности на 1000 жителей).
 - 5. Детская смертность (до 1 года на 1000 живорожденных).
 - 6. Ожидаемая продолжительность жизни мужчин при рождении.
 - 7. Ожидаемая продолжительность жизни женщин при рождении.
 - 8. Валовой внутренний продукт на душу населения.

- 1. Испания
- 2. Италия
- 3. Латвия
- 4. Литва
- 5. Македония
- 6. Молдова
- 7. Нидерданды
- 8. Норвегия
- 9. Польша
- 10. Португалия
- 1. Россия
- 2. Румыния
- 3. Сербия
- 4. Словакия
- 5. Словения
- 16. Украина
- 7. Финляндия
- 8. Франция
- 9. Хорватия
- о. Чехия
- ?1. Швейцария
- 2. Швеция
- 3. Эстония

Таблица 1.2 Матрица корреляций между социально-демографическими показателями

	- 21							
Переменная	1	2	3	4	5	6	7	8
1. Медианный возраст	1	-0,74	0,26	-0,55	-0,78	0,39	0,53	0,39
2. Рождаемость		1	-0,46	0,81	0,50	-0,01	-0,08	0,08
3. Смертность			1	-0,90	-0,04	-0,75	-0,63	-0,55
4. Естественный прирост				1	0,50	0,38	0,27	0,40
5. Детская смертность					1	-0,49	-0,63	-0,58
6. Ожидаемая продолжи- тельность жизни мужчин						1	0,92	0,77
7. Ожидаемая продолжительность жизни женщин							1	0,83
8. ВВП			8					1

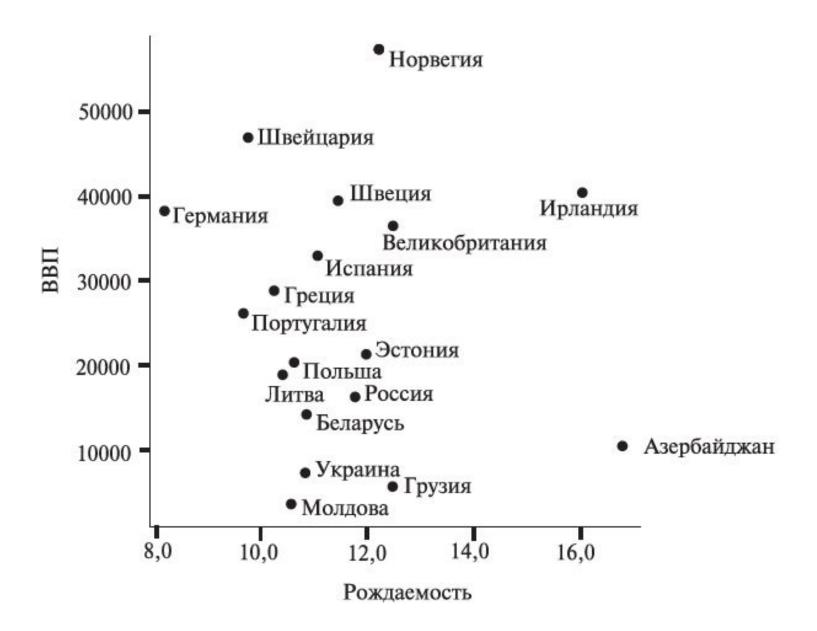


Рис. 2.6. Модель метода главных компонент:

значительный вклад; — вклад средней величины;
незначительный вклад

Таблица 2.8 Собственные значения матрицы корреляций

Компонента	Объясненная дисперсия					
	λ_i	% дисперсии	накопленный %			
y_1	3,82	54,60	54,60			
y_2	2,32	33,12	87,72			
y_3	0,45	6,37	94,09			
y_4	0,19	2,70	96,79			
y_5	0,15	2,15	98,94			
<i>y</i> ₆	0,06	0,83	99,77			
y_7	0,02	0,23	100,00			
Сумма	7,00	100,00				

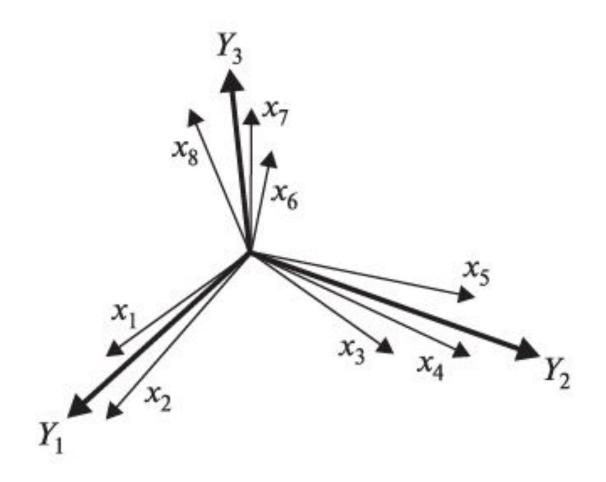


Рис. 2.3. Снижение размерности пространства переменных

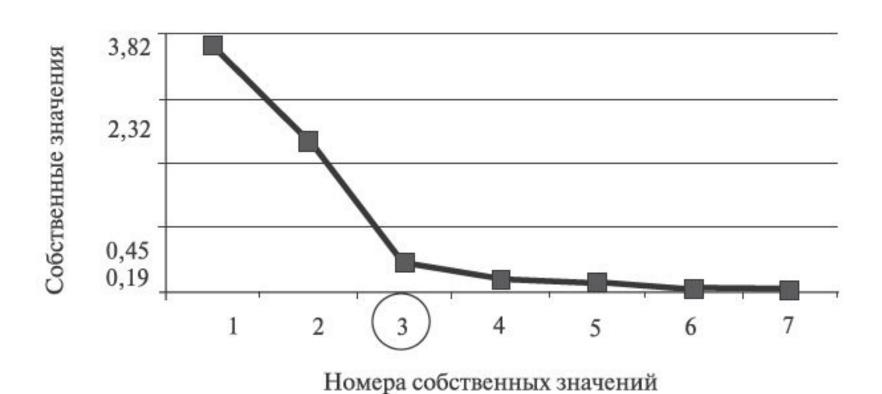
Последовательность ФА

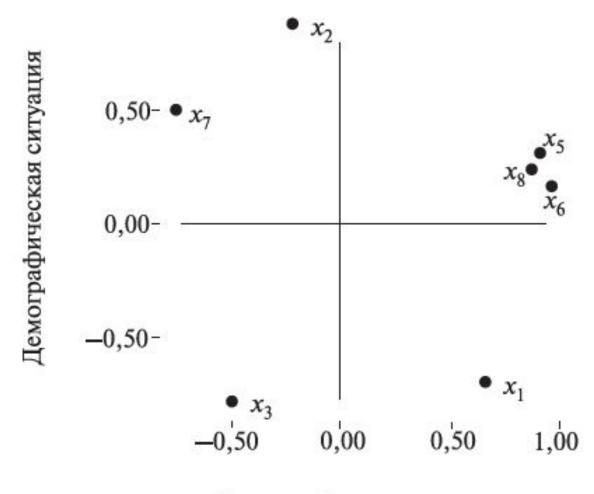
- Выбор исходных данных
- Вычисление корреляционной матрицы
- АГК и оценка числа факторов по графику собственных значений
- Выбор и применение метода ФА
- Вращение факторов
- Интерпретация факторов, принятие решения о качестве факторной структуры
- (Вычисление факторных оценок)

Анализ главных компонент (МГК) и ФА МГК в матричной форме:

$$R = A \cdot A'$$

кол-во компонент = числу переменных


Факторный анализ:


$$\hat{R} = A \cdot A'$$
при условии $\hat{R} \rightarrow R$

кол-во факторов (M) существенно меньше кол-ва переменных (P)

График собственных значений

Критерий числа факторов: P.Кеттелла (scree-test), «каменистой осыпи»

Уровень благосостояния

Рис. 2.10. График факторных нагрузок

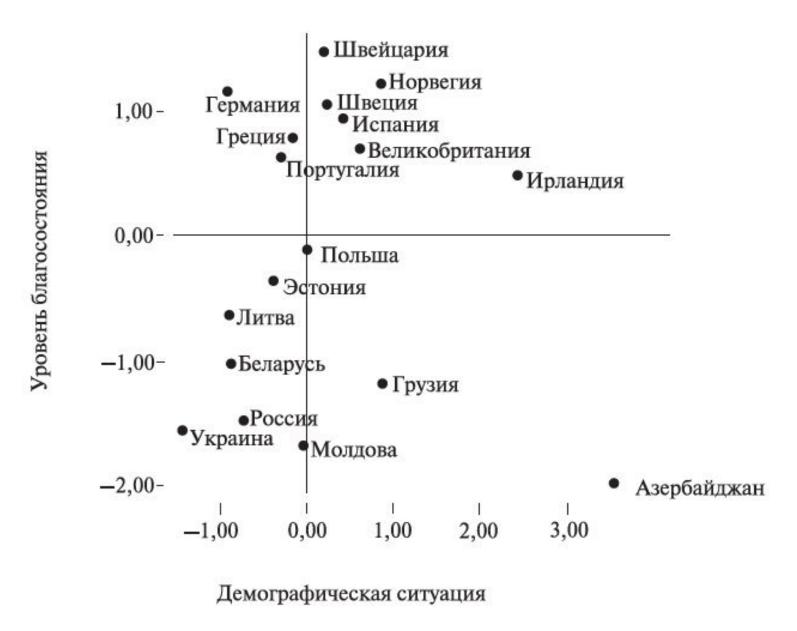
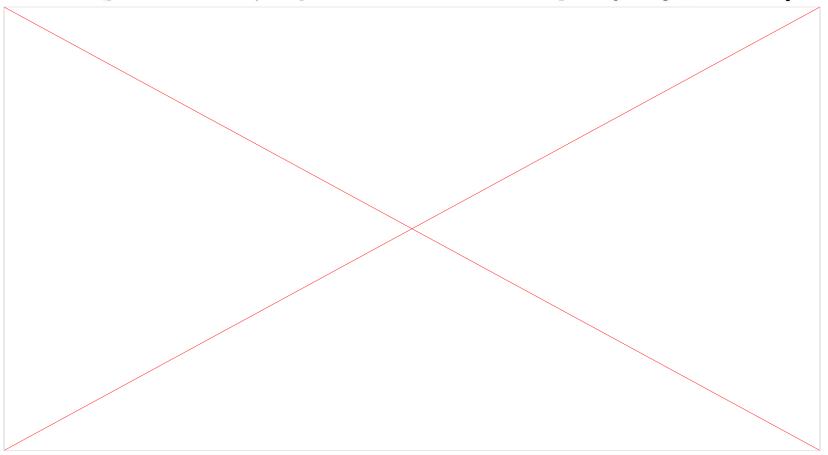


Рис. 2.11. Европейские страны в пространстве главных компонент

Проблема оценки значений факторов

Факторные оценки – новые переменные, значения факторов для объектов (случаев). Переход от *Р* исходных переменных к *М* новым переменным (факторам) с минимальными потерями исходной


$$f_{ik} = \sum_{j=1}^{P} \beta_{i,j} x_{jk} = \beta_{1i} x_{1k} + \beta_{2i} x_{2k} + \dots + \beta_{Pi} x_{Pk}$$

Классические проблемы ФА

- Проблема числа факторов
- Проблема общности и метода ФА
- Проблема вращения и интерпретации
- Проблема факторных оценок

Пример интерпретации факторов

Фактор 1 имеет наибольший вес или наибольшую информативность (27%). Его положительный полюс определяется положительными полюсами переменных 4 (независимый), 8 (спокойный), 10 (невозмутимый) и отрицательным полюсом переменной 7 (расслабленный). Отрицательный полюс этого фактора определяется про-

