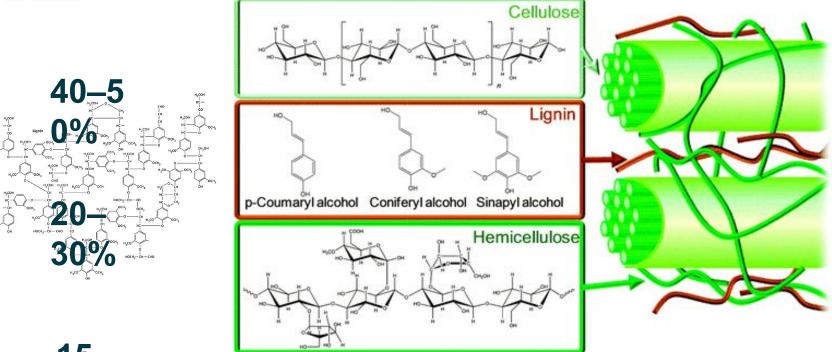


ИНСТИТУТ ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИИ СО РАН


ЛАБОРАТОРИЯ КАТАЛИТИЧЕСКИХ ПРЕВРАЩЕНИЙ ВОЗОБНОВЛЯЕМЫХ РЕСУРСОВ

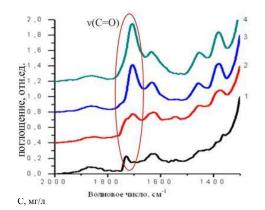
Выделение и модификация древесных полимеров с получением биоактивных полимеров и матриц

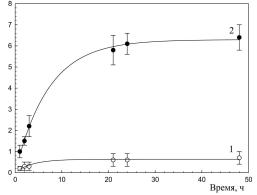
Маляр Ю.Н. к.х.н. с.н.с ИХХТ СО РАН

Химический состав лигноцеллюлозной биомассы

15**–** 30%

Химический состав древесины

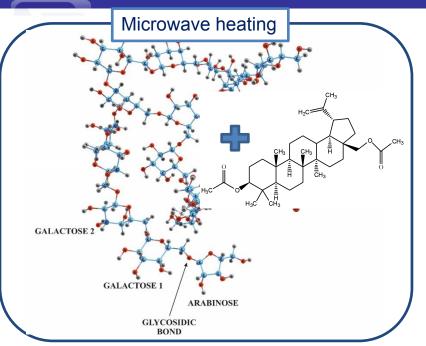

Древесина	Целлю- лоза	Пенто- заны	Лигнин	Растворимые в воде
Пихта	49,4	7,0	27,7	3,6
Лиственница	41,5	8,9	26,4	13,8
Ель	46,0	8,3	27,3	2,0
Сосна	52,2	8,2	26,3	4.1
Береза	45,3	25,3	23,9	2,5
Осина	46,3	24,5	21,8	7,8

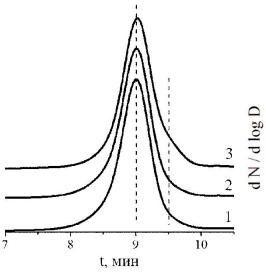


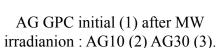
Получение композитов диацетата и дипропионата бетулина с аэросилом

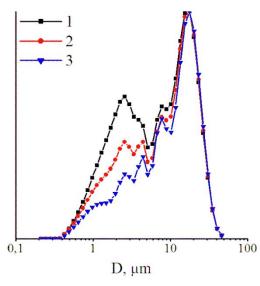
Получены механоактивированные композиты диацетата и дипропионата бетулина с аэросилом и с помощью физико-химических методов электронной микроскопии, ИКспектроскопии и РФА показано, что механохимическая активация приводит к образованию композитов диацетата бетулина с аэросилом, и аморфизации кристаллических диацилов..

Показано, что при растворении в воде физических смесей и механоактивированных композитов, увеличивается раствормость диацилов бетулина в воде от 0,8 до 6,1 г/мл.




Динамика изменения концентрации ДПБ в растворе при растворении: физической смеси ДПБ с аэросилом (1), механоактивированной смеси ДПБ с аэросилом (2)

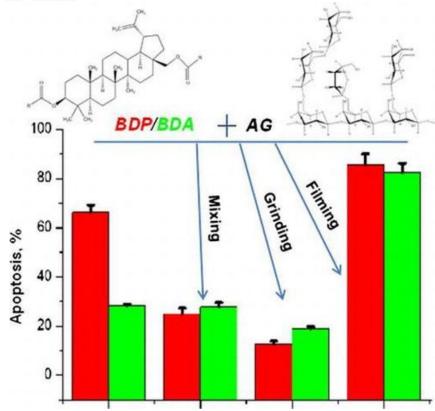

Маляр Ю.Н., Кузнецова С.А., Шахтшнейдер Т.П., Михайленко М.А. Получение композитов диацетата и дипропионата бетулина с аэросилом// **Журнал Сибирского федерального университета. Химия.** 2015. Т.8, № 2, С. 277-286.



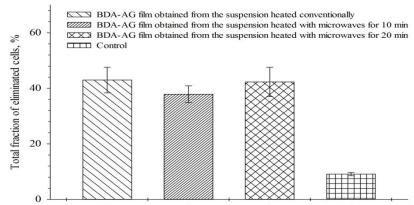
Прлучение композитов диацетата бетулина с арабиногалактаном

Size distributions of BDA particles in water suspensions before (1) and after (2, 3) microwave irradiation under different conditions: 2 – 70 °C, 10 min, 3 – 100 °C, 20 min

МВ нагрев является эффективным методом для осуществления высокоскоростного синтеза супрамолекулярного комплекса ДАБ-АГ. Образующийся при МВ-воздействии супрамолекулярный комплекс может быть перспективным материалом для фармакологических применений.

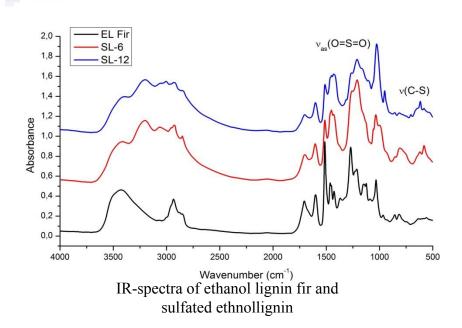

Malyar Y.N., Mikhailenko M.A., Pankrushina N.A. Mikheev A.N., Eltsov I.V., Kuznetsova S.A., Kichkailo A.S., Shakhtshneider T.P. Microwave-assisted synthesis and antitumor activity of the supramolecular complexes of betulin diacetate with arabinogalactan// **Chemical Papers.** 2018. Vol.72. N.3, P. 1257-1263. **Q2**

Маляр Ю.Н., Михайленко М.А., Панкрушина Н.А., Михеев А.Н., Кузнецова С.А., Шахтшнейдер Т.П. Влияние микроволнового облучения на арабиногалактан и его взаимодействие с диацетатом бетулина // **Химия растительного сырья.** 2017. №4. С. 73-79. **Q4**

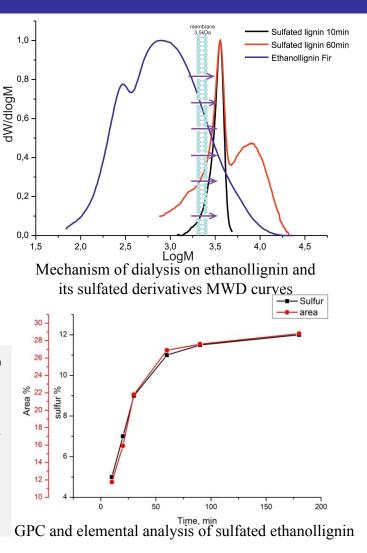

22.03.2021 4

ротивоопухолевая активность композитов эфиров бетулина с арабиногалактаном

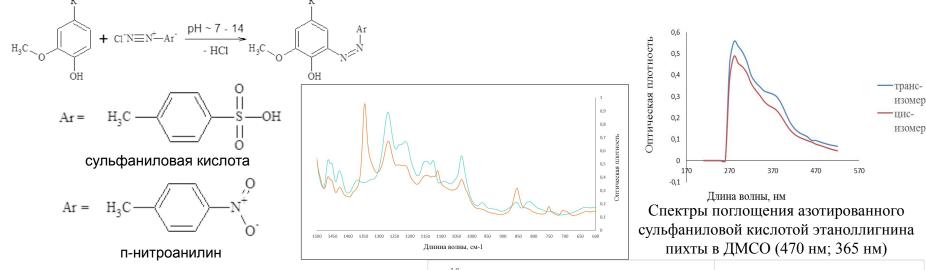
Apoptotic activity against lung adenocarcinoma A549 cells of the initial BDA and BDP (1), physical (2) and ball-milled (3) 1:9 BDA (BDP) – AG mixtures, BDA (BDP) – AG films obtained by evaporation of aqueous solutions (4)

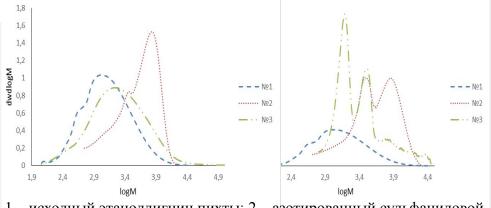

Antitumor activity against EAC cells of the BDA-AG complexes prepared as the films from the suspensions heated conventionally (1) and heated with microwaves for 10 (2) and 20 (3) min in comparison with control (4).

Получены композиты ДАБ и ДПБ с водорастворимым полисахаридом арабиногалактаном с увеличенной растворимостью. Исследования in vitro показали, что композиты сложных эфиров бетулина с арабиногалактаном, проявляют более высокую противоопухолевую активность по сравнению с исходными веществами.


Shakhtshneider T.P., Kuznetsova S.A., Zamay A.S., Zamay T.N., Spivak E.A., Mikhailenko M.A., *Malyar Y.N.*, Kuznetsov B.N., Chesnokov N.V., Boldyrev V.V. New composites of betulin esters with arabinogalactan as highly potent anti-cancer agent// **Nat Prod Res.** 2016. Vol. 30. N.12, P. 1382-1387 **Q2**

Получение сульфатированных этаноллигнинов


Впервые **ВЫСОКИМ** выходом степенью сульфатирования более 12% получен водорастворимый сульфатированный этаноллигнин. Введение сульфатных ИК-ЯМР-спектроскопией. групп подтверждено Введение сульфатных пропорционально групп увеличивает молекулярную массу образцов до 4кДа, что позволяет количественно оценивать степень сульфатирования.


Маляр Ю.Н., Васильева Н.Ю., Казаченко А.С., Скворцова Г.П., Королькова И.В. Изучение процесса сульфатирования этаноллигнина пихты комплексами серного ангидрида с диоксаном и пиридином // **Химия растительного сырья** 2020 **Q4**

Получение азопроизводных этаноллигнинов

Из образцов этаноллигнинов и сульфатированных этаноллигнинов пихты и осины путем реакций азосочетания с помощью сульфаниловой кислоты и п-нитроанилина синтезированы новые водорастворимые азопроизводные органосольвентных лигнинов пихты. Установлены параметры цис-транс изомеризации под действием УФ-излучения.

1 – исходный этаноллигнин пихты; 2 – азотированный сульфаниловой кислотой; 3 – азотированный п-нитроанилином

Malyar Yu.N., Borovkova V.S., Shakulya D.A., Vasilyeva N.Yu. Synthesis and Photosensitivity of new azo polymer from wood ethanollignin// **Journal of Applied Polymer Science in Press**

Проект РФФИ 20-33-70256 Стабильность «Создание фундаментальных основ выделения и модификации древесных гемицеллюлоз как перспективных биоактивных полимеров и матриц»

Руководитель: к.х.н. Маляр Ю.Н.

Методы и подходы для реализации проекта

Древесина лиственницы, опилки

Целлюлоза

Измельчение

Делигнификация в среде:

CH₃COOH H₂O₂ H₁O Газообразные продукты разложения лигнина: СО СО₂

CH₄

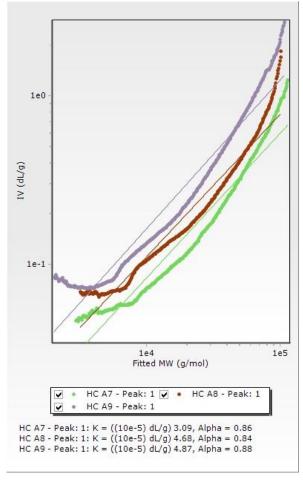
Раствор 1

Концентрирование

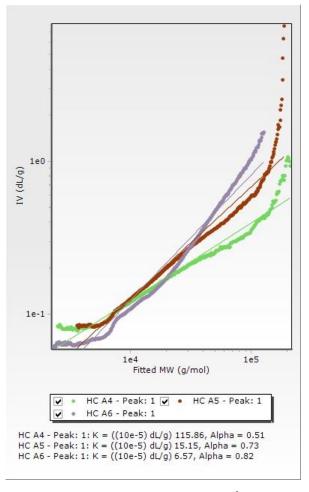
Высаживание ГЦ этанолом

Раствор 2:

уксусная янтарная фумаровая глутаровая молочная кислоты



Гемицеллюлоза


- ✓ Обработка ультразвуком, механическая активация, микроволновое облучение, направленные на улучшение растворимости, изменение молекулярно-массовых характеристик, повышении реакционоспособности
- ✓ Получение полианионных полимеров введение сульфатных групп с использованием системы SO3-диоксан, SO3-ДМФА и других
- Получение полимерных матриц химическая модификация гемицеллюлоз путем сшивки с молекулами хитозана, поливинилпирролидона и других поликатионных полимеров с различными молекулярными массами
- ✓ Для изучения состава и строения гемицеллюлоз, продуктов их химической модификации, будет использован широкий арсенал физико-химических методов исследования, включая 1Н и 13С ЯМР, ИКС с Фурье преобразованием, ГЖХ, ВЭЖХ, БЭТ, ДТА-ДСК, а также традиционные методы химического анализа.

Изучение молекулярно-массовых характеристик гемицеллюлоз

Катализатор	Mw, Да	Ð_
$(NH_4)_6MO_7O_{24}$	16584	1,384
MnSO ₄	16952	1,31
TiO,	18846	1,332
ZnSO	17551	1,342
H,SO,	20553	1,514

Влияние катализатора на разветвленность

Влияние продолжительности на конформацию

Маляр Ю.Н., Боровкова В.С., Чудина А.И., Судакова И.Г. Определение констант уравнения Марка-Куна-Хаувинка древесных гемицеллюлоз методом гель-проникающей хроматографии// **Аналитика Сибири и Дальнего Востока,** Новосибирск, 2020

Участие в выполнении фундаментальных и прикладных исследований

- **1.РФФИ 20-33-70256 Стабильность** «Создание фундаметальных основ выделения и модификации древесных гемицеллюлоз как перспективных биоактивных полимеров и матриц». Руководитель
- **2.** РФФИ 18-43-243016 р_мол_а «Модификация древесных лигнинов с получением перспективных фармакологически активных и светочувствительных водорастворимых полимеров». Руководитель
- **3. РНФ 16-13-10342** «Разработка новых методов получения ценных химических продуктов путем каталитической деполимеризации органосольвентных древесных лигнинов»; **Ответственный исполнитель**
- **4.** РФФИ № 15-53-16015 НЦНИЛ_а «Зеленый» синтез ценных химических веществ из растворимого лигнина с использованием твердых катализаторов.»; Исполнитель
- **5.** РФФИ № 16–43–242083 р_офи_м «Создание фундаментальных основ «зеленых» методов получения из биомассы лиственницы физиологически активных и наноструктурированных функциональных материалов, нанобиокомпозитных удобрений»; Исполнитель
- **6. Проект РФФИ № 16-33-50137 мол_нр** «Получение физиологически активных композитов на основе бетулина и его производных с помощью механохимических методов и микроволновой обработки и исследование их свойств» Ответственный исполнитель
- **7. РФФИ № 18-43-240003 р_а** «Разработка научных основ технологии переработки природного органического сырья в биодеградируемые композиционные материалы на основе альфа-ангеликалактона и целлюлозы»; <u>-</u> <u>Исполнитель</u>
- **8. РФФИ № 18-53-16001 НЦНИЛ_а** «Фундаментальные основы каталитической переработки древесной биомассы в среде суперкритических спиртов»; **Исполнитель**
- 9. ФЦП на 2014-2020 годы "Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России" Гос. контракт № 14.607.21.0031 "Создание основ технологии комплексной переработки биомассы березы с получением биотоплив, биологически активных веществ и функциональных материалов" (2014-2016) Исполнитель

Опыт развития организации: сведения о подготовке научных кадров

- 2016-2020 г.г. СФУ курс «Общая химия. Физическая химия». Для студентов технических специальностей. Подготовлен курс лекций и практических занятий, а также лабораторных работ.
- ❖ 2017-2020 гг. СФУ курс «Химические основы биологических процессов» курс лекций для студентов химического факультета

Научная работа студентов под непосредственным руководством:

- Подготовлены 2 бакалаврские работы
- Руководство 2 студентами (специалитет), 2 магистра

Руководство направлением «Экологически чистая и ресурсосберегающей энергетика, эффективная глубокая переработка возобновляемого природного сырья с получением широкого спектра востребованных химических веществ» проекта «Базовые школы РАН» МАОУ «Лицей №7 им. Героя Советского Союза Б. К. Чернышева» Г. Красноярск