Интерполирование с кратными узлами

Пусть на промежутке $[a,b] \subset D(f)$ функция задана таблично, а также известны некоторые её производные. Узлы, в которых заданы производные (любого порядка), называются кратными узлами

Найти многочлен Q(x) степени s-1, такой, что:

Многочлен Эрмита

Утверждение. Многочлен $Q_{s-1}(x)$, удовлетворяющий условиям эрмитовой интерполяции, существует и он единственный.

Доказательство.

1) Единственность (от противного).

Пусть существует ещё один многочлен $\widetilde{Q}_{s-1}(x)$, удовлетворяющий условиям задачи. Найдём их разность.

$$Q_{s-1}(x) - \widetilde{Q}_{s-1}(x)$$
 — многочлен степени $s-1$ или ниже \Rightarrow

Имеет *s* коней (с учётом их кратностей), т.к.

$$Q(x_0) - \widetilde{Q}(x_0) = 0 = Q'(x_0) - \widetilde{Q}'(x_0) = \emptyset = Q^{(m_0 - 1)}(x_0) - \widetilde{Q}^{(m_0 - 1)}(x_0)$$

$$Q(x_n) - \widetilde{Q}(x_n) = 0$$

$$m_0 + m_1 + m_2 + \square + m_n = s$$

Но многочлен степени s-1 не может иметь более s-1 корней, следовательно $Q_{s-1}(x) - \widetilde{Q}_{s-1}(x) \equiv 0$, т.е. многочлены совпадают.

2) Существование.

Будем строить алгоритм нахождения многочлена Q(x). Что и будет доказательством его существования.

Будем искать многочлен, проходящий через *s* узлов.

Введём узлы
$$x_{ij}^{\varepsilon} = x_i + (j-1)\varepsilon$$
, где $\varepsilon > 0$,

$$i = \overline{0, n}, \quad j = \overline{1, m_i}, \quad \text{if} \quad x_{ij}^{\varepsilon} \xrightarrow[\varepsilon \to 0]{} x_i$$

При достаточно малом ε все x_{ii}^{ε} различны.

Строим таблицу разделённых разностей

$$x_{01}^{\varepsilon}$$
 $f\left(x_{01}^{\varepsilon}\right)$ $f\left(x_{01}^{\varepsilon}, x_{02}^{\varepsilon}\right)$ $f\left(x_{01}^{\varepsilon}, x_{02}^{\varepsilon}, x_{03}^{\varepsilon}\right)$ \boxtimes $f\left(x_{01}^{\varepsilon}, x_{02}^{\varepsilon}, x_{03}^{\varepsilon}\right)$ \boxtimes $f\left(x_{01}^{\varepsilon}, x_{02}^{\varepsilon}, x_{03}^{\varepsilon}\right)$

$$x_{0m_0}^{\varepsilon}$$
 $f(x_{0m_0}^{\varepsilon})$ $f(x_{0m_0}^{\varepsilon}, x_{11}^{\varepsilon})$

$$x_{11}^{\varepsilon}$$
 $f(x_{11}^{\varepsilon})$ $f(x_{11}^{\varepsilon}, x_{12}^{\varepsilon})$

$$x_{nm_n}^{\varepsilon} f(x_{nm_n}^{\varepsilon})$$

Выпишем многочлен Ньютона

$$Q_{s-1}^{\varepsilon}(x) = f\left(x_{01}^{\varepsilon}\right) + f\left(x_{01}^{\varepsilon}, x_{02}^{\varepsilon}\right) \left(x - x_{01}^{\varepsilon}\right) +$$

$$+ f\left(x_{01}^{\varepsilon}, x_{02}^{\varepsilon}, x_{03}^{\varepsilon}\right) \left(x - x_{01}^{\varepsilon}\right) \left(x - x_{02}^{\varepsilon}\right) +$$

$$+ \mathbb{M} + f\left(x_{01}^{\varepsilon}, x_{02}^{\varepsilon}, \mathbb{M}, x_{ij}^{\varepsilon}, \mathbb{M}, x_{nm_n}^{\varepsilon}\right) \left(x - x_{01}^{\varepsilon}\right) \mathbb{M} \left(x - x_{ij}^{\varepsilon}\right) \mathbb{M} \left(x - x_{nm_{n-1}}^{\varepsilon}\right)$$

$$f\left(x_{pl}^{\varepsilon}, \mathbb{M}, x_{kt}^{\varepsilon}\right) = \frac{f\left(x_{pl+1}^{\varepsilon}, \mathbb{M}, x_{kt}^{\varepsilon}\right)}{x_{kt}^{\varepsilon} - x_{pl}^{\varepsilon}} \quad \text{при} \quad p \neq k$$

Выразим разделённые разности через производные

Когда
$$(p=k)$$
 \Rightarrow $f(x_{pl}^{\varepsilon}, \mathbb{X}, x_{kt}^{\varepsilon}) = \frac{f^{(t-l)}(x_i)}{(t-l)!}$ т.е. $f(x_i, \mathbb{X}, x_{it}) = \frac{f^{(p)}(x_i)}{p!}$

Переходя к пределу $\varepsilon \to 0$ получим:

$$Q_{s-1}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \mathbb{Z} + f(x_0, x_0)$$

$$+ f(x_0, \mathbb{Z}, x_n)(x - x_0)^{m_0} (x - x_1)^{m_1} \mathbb{Z} (x - x_n)^{m_{n-1}}$$

Пример. Сведения о некоторой функции y = f(x) представлены следующей дискретной информацией:

i	\mathcal{X}_i	$f(x_i)$	$f'(x_i)$	$f''(x_i)$
0	-1	0	-2	
1	0	1	0	-4
2	1	0	2	

Рассчитаем кратности узлов

$$x_0 = -1 \rightarrow m_0 = 2$$

$$x_1 = 0 \rightarrow m_1 = 3 \qquad \Rightarrow \qquad s = 2 + 3 + 2 = 7$$

$$x_2 = 1 \rightarrow m_2 = 2$$

Следует строить многочлен степени s = 7 - 1 = 6

i	X_i	$f(x_i)$	$f'(x_i) = f(x_i, x_{i+1})$	$\frac{f''(x_i)}{2} = f(x_i, x_{i+2})$	$f(\overline{x_i, x_{i+3}})$	$f(\overline{x_i, x_{i+4}})$	$f(\overline{x_i, x_{i+5}})$	$f(\overline{x_i, x_{i+6}})$
0	-1_	0	-2	$\frac{1+2}{0+1} = 3$	-4	3	-1	1
1	-1	0	$\frac{1-0}{0-\left(-1\right)}=1$	$\frac{0-1}{0+1} = -1$	-1	1	1	
2	0 _	1	\rightarrow 0	$\frac{-4}{2} = -2$	1	3		
3	0_	1	70	$\frac{-1-0}{1-0} = -1$	4			
4	0_	1	$\frac{0-1}{1-0} = -1$	$\frac{2+1}{1-0} = 3$				
5	1 -	0	2					
6	1	0						

$$Q(x) = 0 - 2(x+1) + 3(x+1)^2 - 4(x+1)^2(x-0) + 3(x+1)^2x^2 - 1 \cdot (x+1)^2x^3 + 1 \cdot (x+1)^2x^3(x-1) = x^6 - 2x^2 + 1$$

Для $(s+1)^{-}$ кратно дифференцируемой функции f(x) таточный член интерполяционного многочлена имеет вид

$$|R_{s}(x)| = \frac{f^{(s+1)}(\xi)}{(s+1)!} (x - x_{0})^{m_{0}} (x - x_{1})^{m_{1}} \boxtimes (x - x_{n})^{m_{n}}$$
$$\xi \in [x_{0}, x_{n}]$$

Если все узлы простые (однократные), то многочлен Эрмита есть многочлен Лагранжа: $Q_{s-1}(x) \equiv L_n(x)$

Если вся информация об f(x) сосредоточена в одном узле x_i , то есть x_i узел кратности x_i иногочлен Эрмита это просто многочлен Тейлора с остаточным членом

$$\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_i)^{n+1}$$

Сплайн – интерполяция

Кубический сплайн

Сплайн – некоторая математическая модель гибкого тонкого стержня из упругого материала.

Определение. Сплайном $S_m(x)$ называется определённая на отрезке [a,b] функция l раз непрерывно дифференцируемая $\left(S_m(x) \in C^l[a,b]\right)$, такая, что на каждом промежутке $[x_{i-1},x_i]$ $\left(i=\overline{1,n}\right)$ — это многочлен m-й степени. Разность между степенью сплайна m и показателем его гладкости l называется depermon сплайна depermon сплай

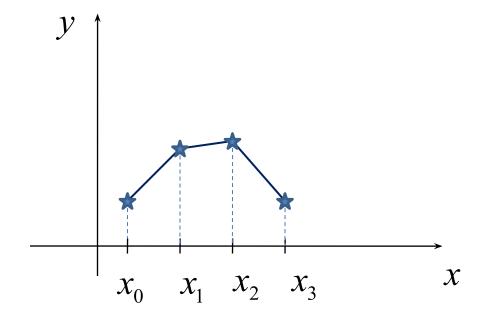
Прикладное применение.

Задача проведения гладкой кривой через точки, произвольным образом лежащие на плоскости, имеет прикладное применение. Допустим, имеется передвижная лаборатория, установленная на автомобиле, которая двигается по дороге и записывает свои географические координаты на жесткий диск бортового компьютера через определенные интервалы времени.

Лаборатория вычисляет координаты по данным, получаемым со спутников GPS (Global Positioning System – глобальной системы позиционирования) и инерциальной навигационной системы. Координаты записываются как во время движения лаборатории, так и в моменты её временных остановок. Требуется получить траекторию движения лаборатории, проведя гладкую интерполяционную кривую через точки, записанные во время проведения заезда. Траектория должна не иметь изломов в местах остановки лаборатории, когда точки траектории имеют одинаковые координаты. Эта задача решается с кубических сплайнов с неравномерным использованием сеточным разбиением параметра t.

Примеры сплайнов:

Кусочно-линейная функция



$$S_{1}(x) = \begin{cases} a_{1}x + b_{1}, & x \in [x_{0}, x_{1}] \\ a_{2}x + b_{2}, & x \in [x_{1}, x_{2}] \\ a_{3}x + b_{3}, & x \in [x_{2}, x_{3}] \end{cases}$$

Степень сплайна -1, дефект -1.

Определение. Кубический сплайн дефекта 1,

интерполирующий функцию f(x) есть функция

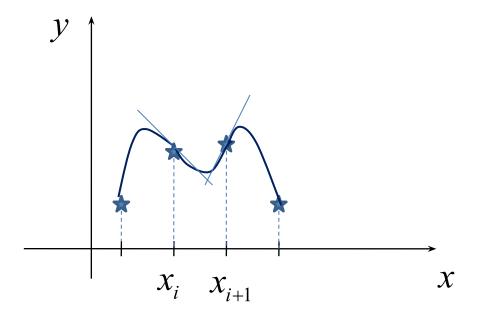
$$S(x) = \left\{ S_k(x) = a_k + b_k(x - x_k) + c_k(x - x_k)^2 + d_k(x - x_k)^3 \right.$$
$$\left. x \in \left[x_{k-1}, x_k \right] \right\}_{k=1}^n \qquad \left(d = m - l \right)$$

удовлетворяющая совокупности условий:

$$1. \quad S(x_k) = f_k$$

2.
$$S(x_k) \in C^2[a, b]$$

3.
$$S''(x_0) = S''(x_n) = 0$$



В узловых точках сплайн имеет непрерывную первую производную, т.е наклон сплайна а точке χ_i равен значению производной в этой точке.

$$x_0 < x_1 < x_2 < \boxtimes < x_n$$
 $f_0 \quad f_1 \quad f_2 \quad \boxtimes \quad f_n$
 $f'_0 \quad f'_1 \quad f'_2 \quad \boxtimes \quad f'_n$

Найти сплайн

Рассмотрим отрезок $[x_i, x_{i+1}]$

Вывод: строим интерполяционный многочлен с кратными узлами

Составим таблицу разделённых разностей

$$x_{i}$$
 f_{i} f'_{i} $\frac{f_{i+1} - f_{i}}{(x_{i+1} - x_{i})^{2}} - \frac{f'_{i}}{x_{i+1} - x_{i}}$
 x_{i} f_{i} $\frac{f_{i+1} - f_{i}}{x_{i+1} - x_{i}}$ $\frac{f'_{i+1}(x_{i+1} - x_{i}) - (f_{i+1} - f_{i})}{(x_{i+1} - x_{i})^{2}}$
 x_{i+1} f_{i+1} f'_{i+1}
 x_{i+1} f_{i+1}

$$\frac{f'_{i+1}(x_{i+1}-x_i)-2(f_{i+1}-f_i)+f'_i(x_{i+1}-x_i)}{(x_{i+1}-x_i)^3}$$

$$S_3(x) = f_i + f_i'(x - x_i) + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i) - f_i'(x_{i+1} - x_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i)}{(x_{i+1} - x_i)^2} (x - x_i)^2 + \frac{(f_{i+1} - f_i)}{(x_{i+1} - x_i)^2}$$

$$+\frac{f'_{i+1}(x_{i+1}-x_i)-2(f_{i+1}-f_i)+f'_i(x_{i+1}-x_i)}{(x_{i+1}-x_i)^3}(x-x_{i+1})^2(x-x_i)$$

Если неизвестны наклоны сплайна (т.е. значения производной в узлах), вычисляют их примерное значение по формулам численного дифференцирования.

Пример

Функция задана в виде таблицы

\mathcal{X}_{i}	1	2	3	4
f_i	0,5	-1	-0,5	5

$$S_3(x) = \begin{cases} 2,000 - 0,923 \ x - 0,866 \ x^2 + 0,289 \ x^3, & x < 2 \\ -0,149 + 2,300 \ x - 2,477 \ x^2 + 0,557 \ x^3, & x < 3 \\ 1,859 + 0,293 \ x - 1,808 \ x^2 + 0,483 \ x^3, & x < 4 \end{cases}$$