Уральский государственный аграрный университет

д.х.н., проф. Хонина Татьяна Григорьевна

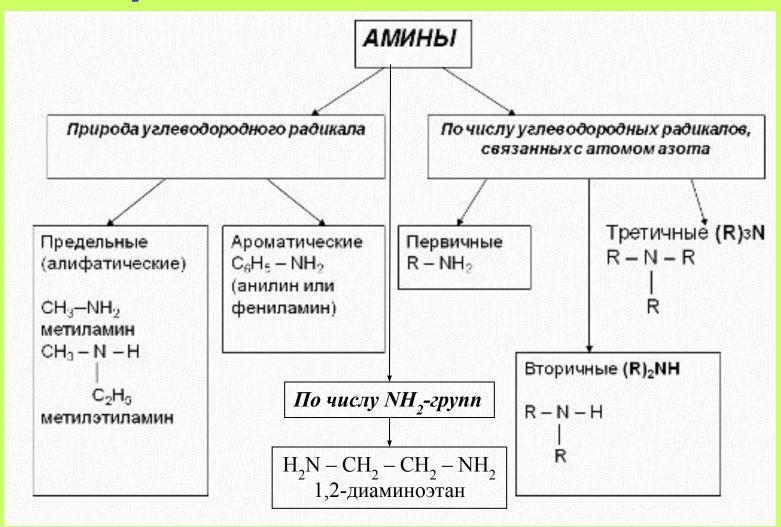
Органическая химия Амины. Аминокислоты. Белки

Екатеринбург, 2019-2020

План

- 1. Амины: классификация, номенклатура, методы получения, физические и химические свойства.
- 2. Аминокислоты: классификация, номенклатура, методы получения, физические и химические свойства.
- 3. Белки. Общая характеристика, классификация, химические свойства, функции и биологическое значение.

П.1. Амины: классификация, номенклатура, методы получения, физические и химические свойства.


АМИНЫ

Амины – производные аммиака (NH₃), в которых один или несколько атомов водорода замещены на углеводородные радикалы.

Классификация:

- По характеру углеводородного радикала (предельные, непредельные, ароматические)
- По числу углеводородных радикалов (первичные, вторичные, третичные)
- •По числу амино-групп (моноамины, диамины, триамины)

Классификация (продолжение)

Номенклатура

(рациональная – по названию радикалов и систематическая -как производные углеводородов)

Отдельные пр	Физическ	ие свойства	
название	формула	т. пл., °С	т. кип., °С
Алифатические			
Метиламин	CH ₃ NH ₂	-93	-6
Этиламин	CH ₃ CH ₂ NH ₂	-81	17
Бензиламин	C ₆ H ₅ CH ₂ NH ₂		184
Диметиламин	(CH ₃) ₂ NH	-92	7
Диэтиламин	(C ₂ H ₅) ₂ NH	-48	56
Триметиламин	(CH ₃) ₃ N	-117	3
Триэтиламин	(C ₂ H ₅) ₃ N	-115	89
Гидроксид	100000000000000000000000000000000000000		
тетраметиламмония	(CH ₃) ₄ N ⁺ OH ⁻	135	разл.
Ароматические	Steel Steelas Bed		
Анилин	C ₆ H ₅ NH ₂	-6	184
2-Метиланилин	NH ₂	-24	200
(<i>о-</i> толуидин)	CH ₃	5	
3-Метиланилин (м-толуидин)	CH ₃ NH ₂	-32	203
4-Метиланилин (<i>n</i> -толуидин)	CH ₃ —NH ₂	45	200
Дифениламин	(C ₆ H ₅) ₂ NH	54	302
Трифениламин	(C ₆ H ₅) ₃ N	127	365
Смешанные			
<i>N</i> -Метиланилин	C ₆ H ₅ NHCH ₃	-57	195
N, N-Диметиланилин	C ₆ H ₅ N(CH ₃) ₂	3	194

Получение аминов

Восстановление интроалканов.

$$CH_3NO_2 + 3H_2 \rightarrow CH_3NH_2 + 2H_2O$$

(kat Ni, t = 40 - 50°C, P)

Реакция Зипина — удобный способ получения ароматических аминов при восстановлении ароматических интросоединений.

 Аминирование галогеналканов в спиртовом растворе при нагревании под давлением:

$$CH_3CI + NH_3 \rightarrow CH_3NH_2 + HCI$$

(t, P, спиртовой раствор).

Строение аминов

- Атом азота в молекуле аминов находится в состоянии SP³ гибридизации и имеет тетраэдрическую ориентацию орбиталей.
- Наличие неподелённой пары электронов, способной к присоединению катионов водорода, подобно молекуле аммиака, обусловливает свойства аминов как органических оснований.

Химические свойства аминов.

Основные свойства.

нималите

гидрокоид этиламмения

слабов основание слабая кислота

диметиламик

хлорид диметиламмения

фениламин

гидросульфат фениламмония или гидросульфат анилиния

II. Алкилирование аминов

реагент – R-CI, условие – избыток основания

третичный амин триметиламин

четвертичная амуониевая соль

Алкилированием можно получать первичные (из аммиака), вторичные, третичные амины и четвертичные аммониевые соли.

N-метилацетамид Основные свойства N в амидах значительно ослабевают.

Реакцией пользуются для защиты NH₂ группы в органических синтезах, например, при синтезе пептидов,

IV. Взаимодействие с HNO₂ – важная аналитическая реакция, позволяющая различать первичные, вторичные и третичные амины

а) R - NH₂ + O = N - OH
$$\longrightarrow$$
 R - OH + N₂ + H₂O первичные амины

b)
$$R'$$
 NH + HO - N = O R' R' N - N = O + H₂O вторичные амины

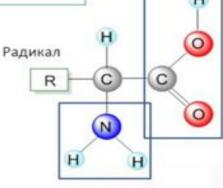
с) третичные амины не реагируют

П.2. Аминокислоты: классификация, номенклатура, методы получения, физические и химические свойства.

Аминокислоты

Классификация аминокислот

Аминокислоты (*аминокарбоновые кислоты*) — органические соединения, в молекуле которых одновременно содержатся карбоксильная и аминогруппа группы


1. Структурная классификация

1.1. Взаимное расположение групп COO- и NH2-

NH₂ COOH

2-аминоэтановая кислота α-аминоуксусная кислота глицин

3-аминобутановая кислота
 β-аминомасляная кислота

Карбоксильная

группа

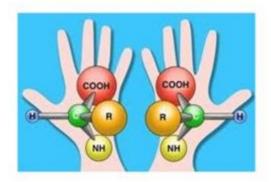
Аминогруппа

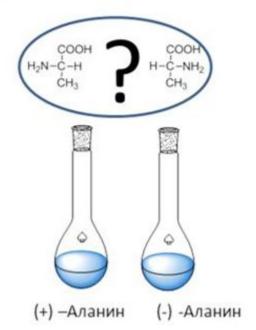
1.2. Природа радикала (R): алифатические, ароматические, гетероциклические

 Количество групп СОО- и NH₂-: моноаминокарбоновые, моноаминодикарбоновые, диаминокарбоновые

$$H_2N$$
 СООН H_2N НООС NH_2 глицин аспарагиновая кислота лизин

Аминокислоты


Протеиногенные аминокислоты («рождающие протеины») - природные аминокислоты, участвующие в построении молекул пептидов и белков


Незаменимые аминокислоты

		incommentation and		0.10.	
1	Н Н ₃ С - СООН NH ₂	Аланин (Ala)	6	NH ₂ H ₂ C-CHCOOH I ₂ NH ₂ CH ₂ C-CH ₂	Лизин (Lys)
2	H ₃ C H H-C-C-COOH H ₃ C NH ₂	Валин (Val)	7	H NH ₂ H ₃ C-C-CHCOOH	Треонин (Tre)
3	COOH H-C-NH ₂ H ₂ C	Лейцин (Leu)	8	NH ₂ H ₃ C-S-CH ₂ -CH ₂ -CHCOOH	(Метионин (Met)
4	COOH H-Ç-NH ₂	Изолейцин (IIe)	9	CH2-CHCOOH	енилаланин (Phe)
	H₂C CH₃	10	CH ₂ -CHCOOH	Триптофан (Тгу)	
5	HN H ₂ C-CI	NH₂ C-CH-COOH H₂ Аргинин (Arg)	11	NH2 CH2 CHCOOH	Гистидин (His)

20 аминокислот, входящих в состав белка

Конфигурация протеиногенных аминокислот

Конфигурация – расположение атомов, характеризующее определенный стереоизомер

R,S — номенклатура L,D - номенклатура

COOH H₂N-C-H R

L-аминокислота

COH HO-C-H CH₂OH

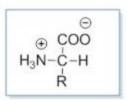
L-глицериновый альдегид

Синтез аминокислот

1. Аминирование α-галогенкислот

$$R$$
 COOH $\xrightarrow{+ Br_2, P}$ R COOH $\xrightarrow{NH_3}$ R COOH

Р. Геля-Фольгарда-Зелинского

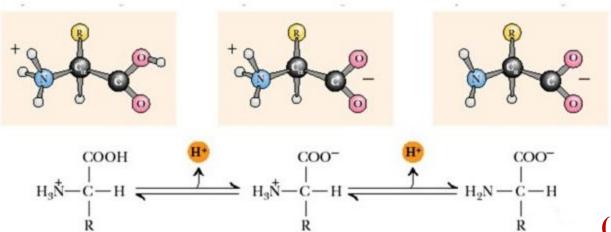

2. Действие NH₃ на оксинитрилы

$$H_3C$$
— $CH=O$ \xrightarrow{HCN} H_3C — $CH=CN$ $\xrightarrow{NH_3}$ H_3C — $C=C$ — $C=N$ $\xrightarrow{+H_2O}$ H_3C — $C=C$ — $COOH$ NH_2

3. Из оксо-кислоты – действие NH_3 и H_2 (kat)

$$H_3C$$
— C — C OOH H_3 — H_3C — C — C OOH H_2 — H_3C — C — C OOH H_3 — H_3C — C — C OOH H_3 — H_3C — C — C OOH H_3 — H_3

Кислотно-основные свойства аминокислот

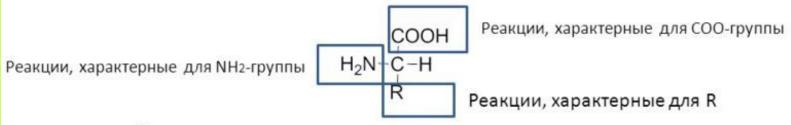


Высокие Тпл. (200-350°С); растворимы в воде; нерастворимы в неполярных органических растворителях.

Биполярные ионы, цвиттер-ионы

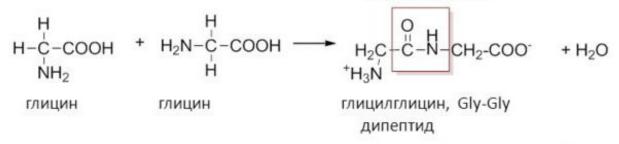
Изоэлектрическая точка - значение pH среды, при котором аминокислота существует преимущественно в виде цвиттер-иона

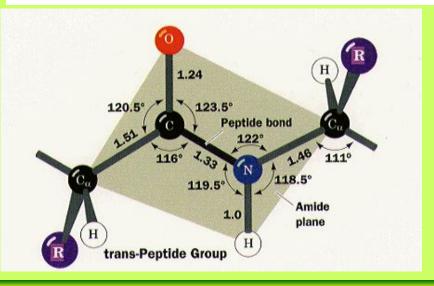
Аминокислоты – амфотерные соединения

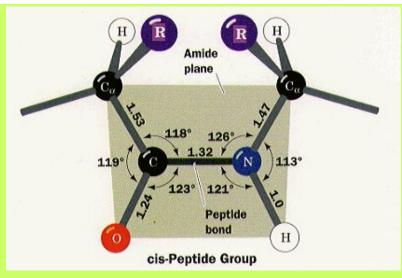

(см. лаборато<mark>рнун работу)</mark>

Химические свойства аминокислот

- Реакция карбоксильной группы:
- 1. Образование солей с основаниями
- 2. Этерификация
- Реакции аминогруппы:
- 1. Образование солей с минеральными кислотами
- 2. Взаимодействие с азотистой кислоТОЙ
- Специфические реакции:
- 1. Образование окрашенных комплексов с катионами меди
- 2. Декарбоксилирование под действием ферментов
- 3. Превращения при нагревании
- 4. Конденсация с образованием пептидов


(реакции – на доске; также см. лабораторную работу)


Реакции аминокислот



Синтез пептидов

Пептидная связь

П.З. Белки: общая характеристика, классификация, химические свойства, функции и биологическое значение.

Белки

Белки (протеины, полипептиды) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью α-аминокислот

(proteios, греч. - первый)

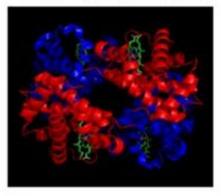
Глицин Серин Тирозин Лейцин Фенилаланин

В живых организмах аминокислотный состав белков определяется генетическим кодом.

α-Аминокислоты – мономеры для синтеза белков

В природе обнаружено более 300 аминокислот, однако в составе белков встречается только 20 (α-аминокислоты)

Классификация белков

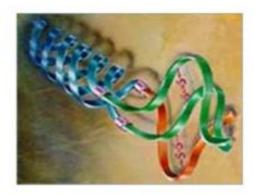

По химическому составу белки делятся на 2 класса:

протеины — простые белки, состоящие только из остатков α -аминокислот (*глобулярные и* фибриллярные)

протеиды – сложные белки, в состав которых, наряду с остатками аминокислот, входят фрагменты соединений иных классов органических и неорганических веществ, называемые простетическими (фосфопротеиды, хромопротеиды, металлопротеиды, липопротеиды, гликопротеиды, нуклеопротеиды)

Протеины – простые белки

Глобулярные белки - полипептидные цепи плотно свёрнуты в компактные шарообразные структуры (глобулы)

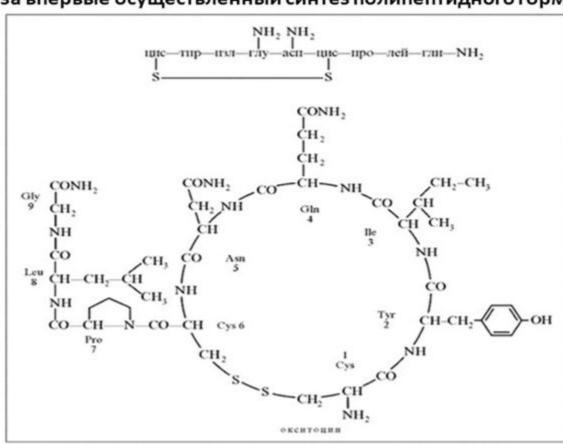


Трехмерная структура молекулы гемоглобина

Растворимы в воде или водных растворах кислот, оснований, солей.

К глобулярным белкам относятся ферменты, иммуноглобулины, транспортные и регуляторные гормоны, антитела, альбумин яиц, гемоглобин, фибриноген, фибрин

Фибриллярные белкиполипептидные цепи, имеющие вытянутую нитевидную структуру


Не растворимы в воде.

К фибриллярным белкам относятся α-кератины, коллаген, фиброин.

Синтез белков. Окситоцин —полипептидный гормон

Нобелевская премия 1955г.

за впервые осуществленный синтез полипептидного гормона

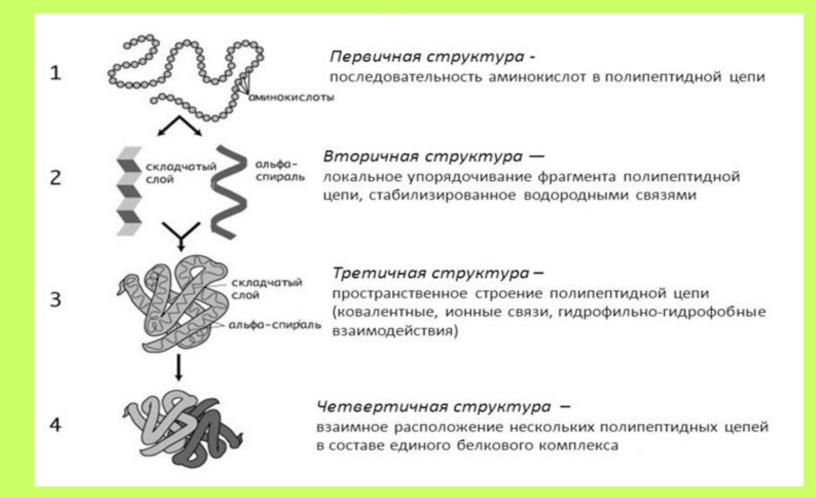
Винсент Дю Виньо

Общая схема синтеза пептидов

$$NH_2CH_2COONa + C_6H_5COCI \longrightarrow C_6H_5CONHCH_2COOH + NaCI$$

Защита амино-группы

$$NH_2CHCOOH + C_2H_5OH \longrightarrow NH_2CHCOOC_2H_5 + H_2O$$
 CH_3


Защита СООН-группы

$$C_6H_5CONHCH_2COOH + NH_2CHCOOC_2H_5 \longrightarrow CH_3$$

Образование пептидной связи

Снятие защиты

Уровни структурной организации белков

Химические свойства белков

- Денатурация
- Гидролиз
- Качественные реакции:
- биуретовая реакция
- ксантопротеиновая реакция
- реакция Милона
- нингидринная реакция

(реакции на доске, также см. лабораторную работу)

Функции и биологическое значение белков

- Каталитическая
- Структурная
- Защитная (физическая, химическая, иммунная защита)
- Сигнальная
- Транспортная
- Запасная (резервная)
- Моторная (двигательная)