<u>График квадратичной функции,</u> <u>содержащей переменную под знаком</u> <u>абсолютной величины.</u>

Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью.

Л. Н. Толстой.

Основные определения и свойства

Функция, определяемая формулой у=ах²+вх+с, где х и у переменные, а параметры а, в и с — любые действительные числа, причём а≠0, называется квадратичной.

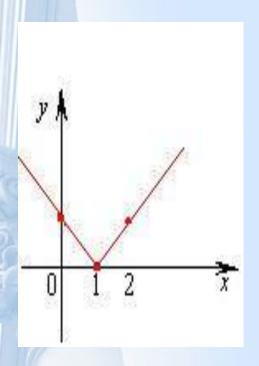
Абсолютной величиной неотрицательного числа называется само это число, абсолютной величиной отрицательного числа называется противоположное ему положительное число.

$$|x| = \begin{cases} x, _ecnu _x \ge 0, \\ -x, _ecnu _x < 0 \end{cases}$$

Свойства:

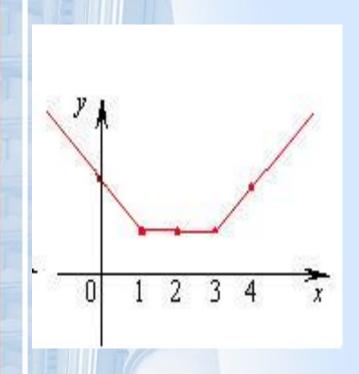
- $1. |a| \ge 0,$
- 2. $|a|^2 = a^2$,
- $3.|a\cdot b|=|a|\cdot |b|$,
- 4. |a/b| = |a|/|b|, $b \neq 0$

Построение графика линейной функции, содержащей переменную под знаком модуля.



1)f(x)=|x-1|. x=1- корень подмодульного выражения. Возьмем x=0, (0<1) и x=2, (2>1).

Вычисляя функции в точках 1,0 и 2, получаем график, состоящий из двух отрезков.



2) f(x)=|x-1|+|x-2|. Вычисляя значение функции в точках 1, 2, 0 и 3, получаем график, состоящий из трех отрезков прямых.

Построение графика квадратичной функции, содержащей переменную под знаком модуля

На примере функции $y = x^2 - 6x + 5$ рассмотрим всевозможные случаи расположения модуля.

1.
$$y = |x|^2 - 6x + 5|$$

2.
$$y = |x|^2 - 6x + 5$$

3.
$$y = x^2 - 6|x| + 5$$

4.
$$y = |x|^2 - 6|x| + 5$$

5.
$$y = |x^2 - 6x| + 5$$

6.
$$y = |x^2 - 6|x| + 5|$$

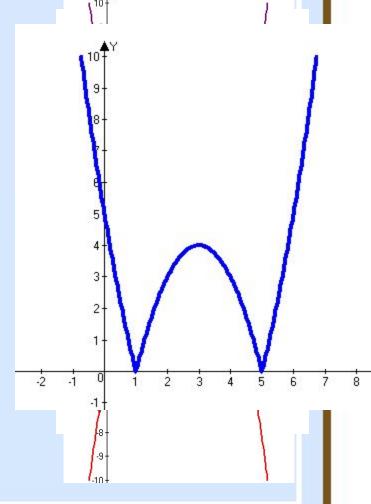
7.
$$y = x^2 - |6x + 5|$$

8.
$$|y| = x^2 - 6x + 5$$

Построим график функции $y = |x|^2 - 6x + 5|$

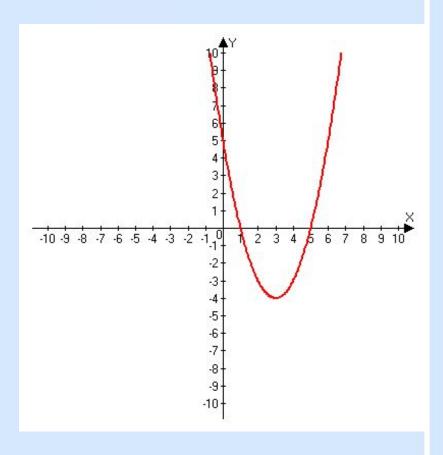
Пользуясь определением модуля, рассмотрим два сминая.

2)
$$x^2 - 6x + 5 < 0$$
, morda $y = -(x^2 - 6x + 5)$
 $u\lambda u - x^2 + 6x - 5 > 0$, $y = -x^2 + 6x - 5$.



Рассмотрим график функции $y = |x|^2 - 6x + 5$

 $T.к. |x|^2 = x^2$, то функция $y = |x|^2 - 6x + 5$ совпадает с функцией $y = x^2 - 6x + 5$, а, значит, имеют один и тот же график.



Paccмompum график функции $y = x^2 - 6|x| + 5$

Пользуясь определением модуля, рассмотрим два случая:

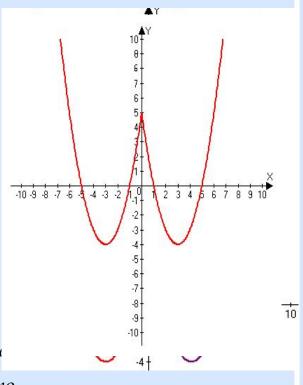
1) Пусть $x \ge 0$, тогда $y = x^2 - 6x + 5$. Построим параболу $y = x^2 - 6x + 5$ и обведём ту её часть, которая соответствует неотрицательным значениям x, т.е. часть, расположенную правее оси Oy

2) Пусть x < 0, тогда $y = x^2 + 6x + 5$.

В той же координатной плоскости построим параболу $y = x^2 + 6x + 5$ и обведём ту её часть, которая соответсто отрицательным значениям x, т.е. часть, расположенную

левее оси Оу. Обведённые части парабол вместе образуют

График функции $y = x^2 - 6|x| + 5$



Рассмотрим график функции $y = |x|^2 - 6|x| + 5$.

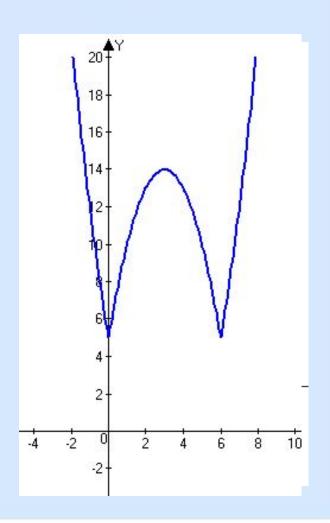
 $T.к. |x|^2 = x^2$, то функция $y = |x|^2 - 6|x| + 5$ совпадает с функцией $y = x^2 - 6|x| + 5$ (см пред. пример)

Построим график функции $y = |x^2 - 6x| + 5$

$$1)y = x^2 - 6x$$

$$2)y = |x^2 - 6x|$$

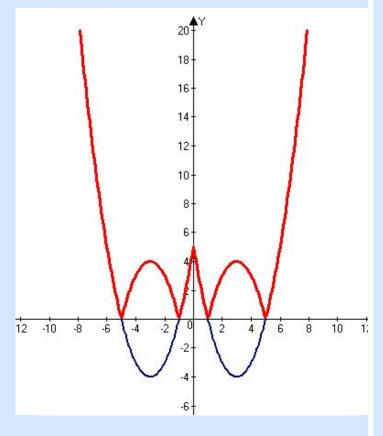
$$(3)y = |x^2 - 6x| + 5$$



Построим график функции y = |x2 - 6|x| + 5|.

1) $y = x^2 - 6|x| + 5$ (рассмотрено в 10 слайде)

$$(2)y = |x^2 - 6|x| + 5|$$



Построим график функции y = x 2 - |6x + 5|.

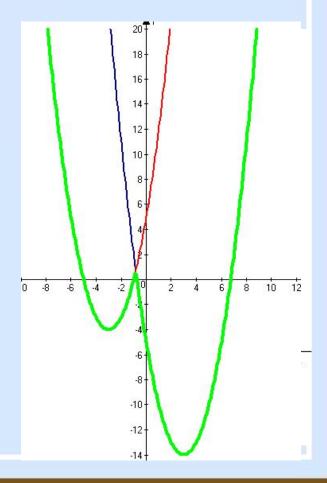
1)Найдем нули функции: y = 6x + 5, 6x + 5 = 0, x = -5%.

2) Рассмотрим два случая:

1)6x+5≥0, т.е. $x \ge -\frac{5}{6}$, , тогда функция примет вид $y = x^2 - 6x - 5$.

2) 6x+5<0, т.е. $x < -\frac{5}{6}$, тогда функция принимает вид $y = x^2 + 6x + 5$.

3)Построили график функции y = x 2 - |6x + 5|.



Равенство $|y| = x^2 - 6x + 5$ не задает функции т. к. при $x^2 - 6x + 5 > 0$ имеем 2 значения у, соответствующих данному значению x, а при $x^2 - 6x + 5 < 0$, ни одного такого значения. График данного уравнения строится так:

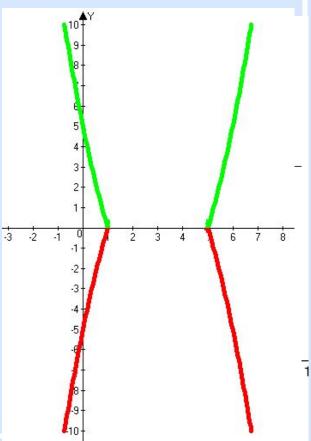
Отбрасываем ту часть графика , которая лежит ниже оси Ох, а оставшуюся часть симметрично отображаем

относительно оси Ох.

1)
$$\Pi pu \ x^2 - 6x + 5 > 0, \ y = x^2 - 6x + 5$$

- 2) $npu x^2 6x + 5 < 0$, $y = -(x^2 6x + 5)$
- 3) Построили график функции

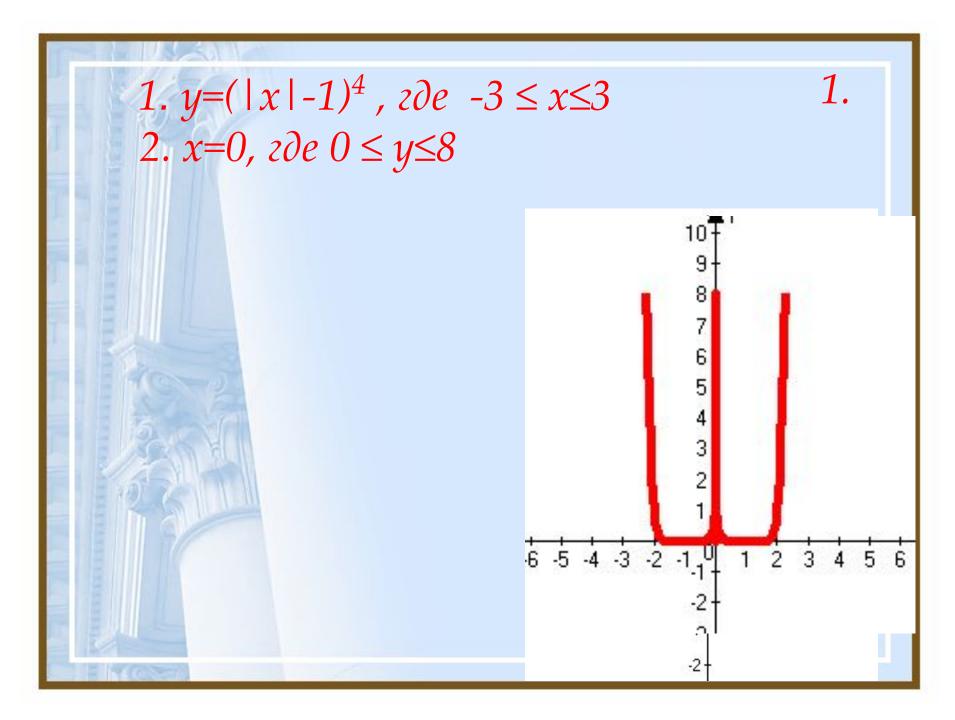
$$|y| = x^2 - 6x + 5$$



Выводы:

1)Для построения графика функции y = |f(x)|, надо сохранить ту часть графика функции y = f(x), точки которой находятся на оси Ох или выше оси Ох, и симметрично отразить относительно оси Ох ту часть графика функции y = f(x), которая расположена ниже оси Ох.

- 2) Для построения графика y = f(|x|) надо сохранить ту часть графика функции y = f(|x|), точки которой на оси Оу или справа от неё и симметрично отразить эту часть графика относительно оси Оу.
- 3) Чтобы построить график уравнения \y\= f(x) нужно: Отбросить ту часть графика, которая лежит ниже оси Ох, а оставшуюся часть симметрично отобразить относительно оси Ох



$-2 |x|^2 + 8$, $z \partial e - 2 \le x \le 2$ y=4, $z \partial e - 2 \le x \le 2$

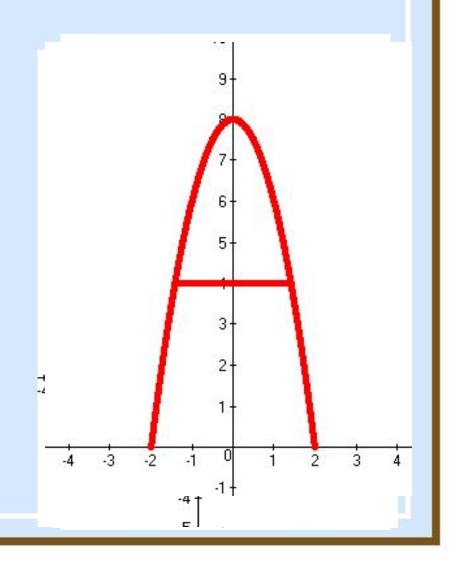
1)
$$y=2|x|^2$$

2)
$$y = -2|x|^2$$

3)
$$y = -2|x|^2 + 8$$

$$-2 \le x \le 2$$

$$-1,4 \le x \le 1,4$$



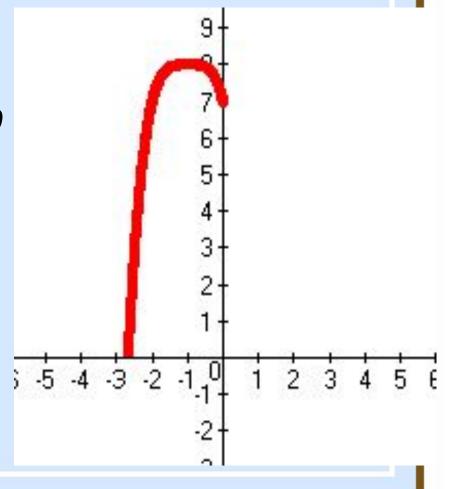
$$y = -(|x|-1)^4 + 8$$
, $2\partial e^{-3} \le x \le 0$

3.

1)
$$y=(|x|-1)^4$$
, $ede -3 ≤ x≤0$

2)
$$y=-(|x|-1)^4$$
, $z ∈ 3 ≤ x ≤ 0$

3)
$$y=-(|x|-1)^4+8$$
, $z ∈ 3 ≤ x ≤ 0$



$y=x^2+(|y-4|-2)^2=4$, $z \partial e 0 \leq y \leq 8$, x=0

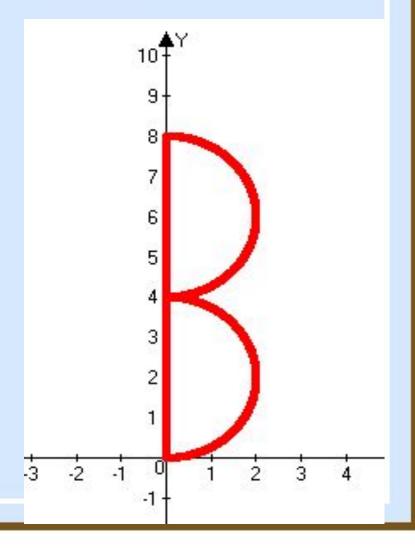
$$x^2+y^2=4$$

1)
$$y=\pm \sqrt{4-x^2}$$
, $0 \le x \le 2$

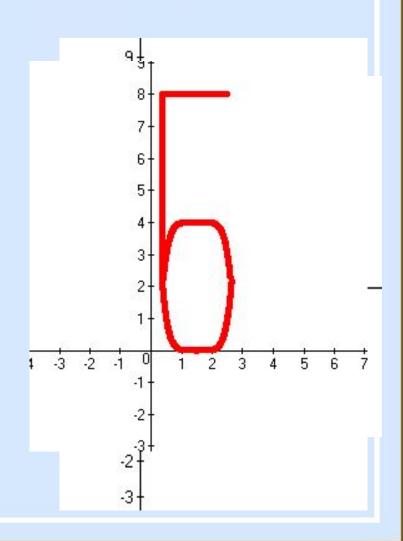
2)
$$y=\pm \sqrt{4-x^2+6}$$

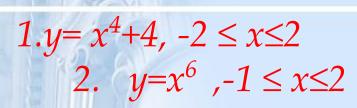
3)
$$y = \pm \sqrt{4 - x}^2 + 2$$

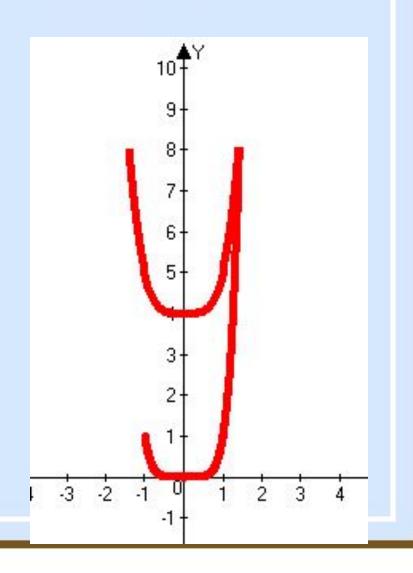
$$4)x=0, 0 \le y \le 8$$

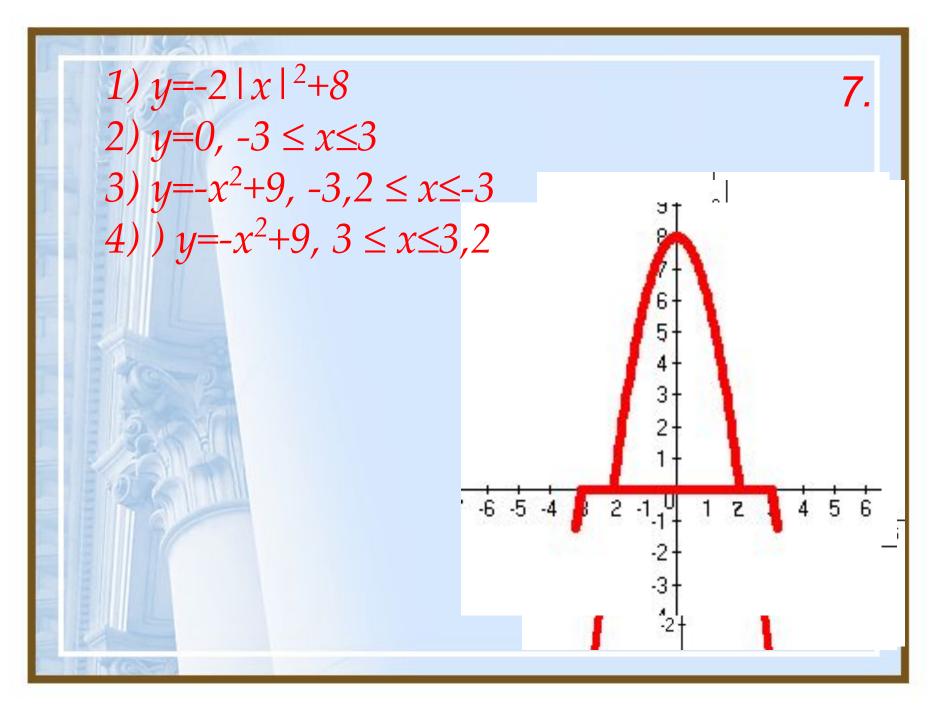


- 2) $y=(x-1.5)^6$, $0.35 \le x \le 2.64$
- 3) $x=0.35, 2 \le y \le 8$
- 4) $y=8, 0.35 \le x \le 2.5$

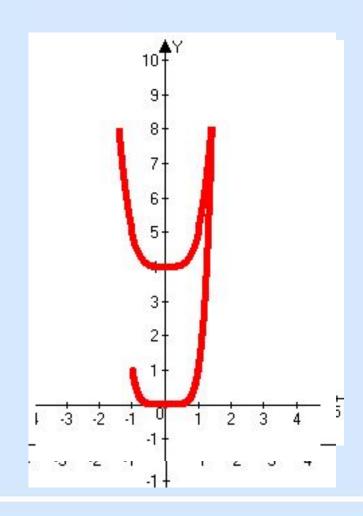








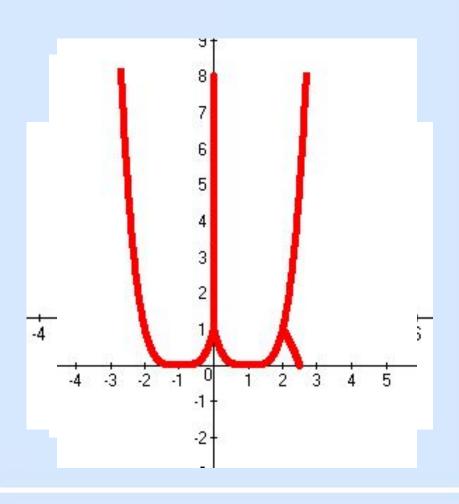
1. $y=x^4+4$, $-2 \le x \le 2$ 2. $y=x^6$, $-1 \le x \le 2$



1) $y = (|x| - 1)^4, -3 \le x \le 3$

2)x=0, $0 \le y \le 8$

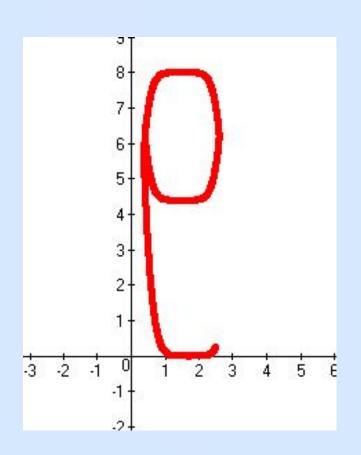
 $3)y=x2+2,5x, 2 \le x \le 2,5$



1)
$$y = -(x-5)^6 + 8$$
, 0,4
 $\le y \le 2$,6

2)
$$y=(x-5)^6 +4.4$$
, 0.4
 $\le y \le 2.6$

$$3)y=(x-1,7)^6,0,35 \le x \le 2,5$$



1)
$$y = -(x-5)^6 + 8$$
, 0,4
 $\le y \le 2,6$

2)
$$y=(x-5)^6+4,4$$
, 0,4
 $\leq y \leq 2,6$

$$3)y=(x-1,7)^6,0,35 \le x \le 2,5$$

