CSCI 1900 Discrete Structures

Logical Operations
Section 2.1

Statement of Proposition

- Statement of proposition a declarative sentence that is either true or false, but not both
- Examples:
 - The earth is round: statement that is true
 2+3=5: statement that is true
 - Do you speak English? This is a question, not a statement

More Examples of Statements of Proposition

- 3-x=5: is a declarative sentence, but not a statement since it is true or false depending on the value of x
- Take two aspirins: is a command, not a statement
- The temperature on the surface of the planet Venus is 800°F: is a declarative statement of whose truth is unknown to us
- The sun will come out tomorrow: a statement that is either true or false, but not both, although we will have to wait until tomorrow to determine the answer

Logical Connectives and Compound Statements

- x, y, z, ... denote variables that can represent real numbers
- p, q, r,... denote prepositional variables that can be replaced by statements.
 - -p: The sun is shining today
 - -q: It is cold

Negation

- If *p* is a statement, the negation of *p* is the statement *not p*
- Denoted ~p
- If p is true, ~p is false
- If p is false, ~p is true
- ~p is not actually connective, i.e., it doesn't join two of anything
- not is a unary operation for the collection of statements and ~p is a statement if p is

Examples of Negation

- If p: 2+3 > 1 then If $\sim p: 2+3 \le 1$
- If q: It is cold then ~q: It is not the case that it is cold, i.e., It is not cold.

Conjunction

- If p and q are statements, then the
 conjunction of p and q is the compound
 statement "p and q"
- Denoted p ∧ q
- p∧q is true only if both p and q are true
- Example:
 - p: ETSU parking permits are expensive
 - q: ETSU has plenty of parking
 - $-p \land q = ?$

Disjunction

- If p and q are statements, then the *disjunction* of p and q is the compound statement "p or q"
- Denoted p V q
- p V q is true if either p or q are true
- Example:
 - p: I am a male
 - q: I am under 40 years old
 - $-p \lor q = ?$

Exclusive Disjunction

- If p and q are statements, then the exclusive disjunction is the compound statement, "either p or q may be true, but both are not true at the same time."
- Example:
 - p: It is daytime
 - q: It is night time
 - -pVq (in the exclusive sense) = ?

Inclusive Disjunction

- If p and q are statements, then the *inclusive disjunction* is the compound statement, "either p or q may be true or they may both be true at the same time."
- Example:
 - p: It is cold
 - q: It is night time
 - -pVq (in the inclusive sense) = ?

Exclusive versus Inclusive

- Depending on the circumstances, some disjunctions are inclusive and some of exclusive.
- Examples of Inclusive
 - "I have a dog" or "I have a cat"
 - "It is warm outside" or "It is raining"
- Examples of Exclusive
 - Today is either Tuesday or it is Thursday
 - Pat is either male or female

Compound Statements

- A compound statement is a statement made from other statements
- For n individual propositions, there are 2ⁿ possible combinations of truth values
- A truth table contains 2ⁿ rows identifying the truth values for the statement represented by the table.
- Use parenthesis to denote order of precedence
- ↑ has precedence over V

Truth Tables are Important Tools for this Material!

р	q	p∧q	p	q	pVq
		Т	Т	Т	Т
Т	F	F	Т	F	Т
F	Т	F	F	Т	Т
F	F	F	F	F	F

Compound Statement Example (p \lambda q) \mathbb{V} (\sigma p)

p	q	p∧q	~p	(p ∧ q) ∨ (~p)
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	F	Т	Т
F	F	F	Т	Т

Quantifiers

- Back in Section 1.1, a set was defined {x | P(x)}
- For an element t to be a member of the set, P(t) must evaluate to "true"
- P(x) is called a predicate or a propositional function

Computer Science Functions

- if P(x), then execute certain steps
- while Q(x), do specified actions

Universal quantification of a predicate P(x)

- Universal quantification of predicate P(x) =
 For all values of x, P(x) is true
- Denoted $\forall x P(x)$
- The symbol ∀ is called the universal quantifier
- The order in which multiple quantifications are considered does not affect the truth value (e.g., ∀x ∀y P(x,y) ≡ ∀y ∀x P(x,y)
)

Examples:

- P(x): -(-x) = x
 - This predicate makes sense for all real numbers x.
 - The universal quantification of P(x), ∀x P(x), is a true statement, because for all real numbers, -(-x) = x
- Q(x): x+1<4
 - ∀x Q(x) is a false statement, because, for example, Q(5) is not true

Existential quantification of a predicate P(x)

- Existential quantification of a predicate P(x) is the statement "There exists a value of x for which P(x) is true."
- Denoted $\exists x P(x)$
- Existential quantification may be applied to several variables in a predicate
- The order in which multiple quantifications are considered does not affect the truth value

Applying both universal and existential quantification

- Order of application does matter
- Example: Let **A** and **B** be n x n matrices
- The statement $\forall A \exists B A + B = I_n$
- Reads "for every A there is a B such that A + B = I_n"
- Prove by coming up for equations for b_{ii} and b_{ii} (j≠i)
- Now reverse the order: $\exists B \forall A A + B = I_n$
- Reads "there exists a B such that for all $AA + B = I_n$ "
- THIS IS FALSE!

Assigning Quantification to Proposition

- Let p: $\forall x P(x)$
- The negation of p is false when p is true and true when p is false
- For p to be false, there must be at least one value of x for which P(x) is false.
- Thus, p is false if $\exists x \sim P(x)$ is true.
- If $\exists x \sim P(x)$ is false, then for every x, $\sim P(x)$ is false; that is $\forall x P(x)$ is true.

Okay, what exactly did the previous slide say?

- Assume a statement is made that "for all x, P(x) is true."
 - If we can find one case that is not true, then the statement is false.
 - If we cannot find one case that is not true, then the statement is true.
- Example: ∀ positive integers, n,
 P(n) = n² + 41n + 41 is a prime number.
 - This is false because ∃ an integer resulting in a non-prime value, i.e., ∃n such that P(n) is false.

Discrete Structures

Conditional Statements Section 2.2

Conditional Statement/Implication

- "if p then q"
- Denoted $p \Rightarrow q$
 - p is called the antecedent or hypothesis
 - q is called the consequent or conclusion
- Example:
 - p: I am hungry
 - q: I will eat
 - p: It is snowing
 - q: 3+5=8

Conditional Statement/Implication (continued)

- In English, we would assume a cause-and-effect relationship, i.e., the fact that p is true would force q to be true.
- If "it is snowing," then "3+5=8" is meaningless in this regard since *p* has no effect at all on *q*
- At this point it may be easiest to view the operator "⇒" as a logic operationsimilar to AND or OR (conjunction or disjunction).

Truth Table Representing Implication

- If viewed as a logic operation, p ⇒ q can only be evaluated as false if p is true and q is false
- This does not say that p causes q
- Truth table

p	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Examples where $p \Rightarrow q$ is viewed as a logic operation

- If p is false, then any q supports $p \Rightarrow q$ is true.
 - False ⇒ True = True
 - False ⇒ False = True
- If "2+2=5" then "I am the king of England" is true

Converse and contrapositive

- The converse of $p \Rightarrow q$ is the implication that $q \Rightarrow p$
- The contrapositive of $p \Rightarrow q$ is the implication that $\sim q \Rightarrow \sim p$

Converse and Contrapositive Example

Example: What is the converse and contrapositive of *p*: "it is raining" and *q*: I get wet?

- Implication: If it is raining, then I get wet.
- Converse: If I get wet, then it is raining.
- Contrapositive: If I do not get wet, then it is not raining.

Equivalence or biconditional

- If p and q are statements, the compound statement p if and only if q is called an equivalence or biconditional
- Denoted $p \Leftrightarrow q$

Equivalence Truth table

 The only time that the expression can evaluate as true is if both statements, p and q, are true or both are false

p	Q	p⇔q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Proof of the Contrapositive

Compute the truth table of the statement $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$

						$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$
T	T	T	F	F	Т	T
T	F	F	T	F	F	T
F	T	T F T	F	T	T	T
F	F	T	T	T	T	T

Tautology and Contradiction

- A statement that is true for all of its propositional variables is called a tautology. (The previous truth table was a tautology.)
- A statement that is false for all of its propositional variables is called a contradiction or an absurdity

Contingency

- A statement that can be either true or false depending on its propositional variables is called a *contingency*
- Examples
 - $-(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$ is a tautology
 - $-p \land \sim p$ is an absurdity
 - $-(p \Rightarrow q) \land \sim p$ is a contingency since some cases evaluate to true and some to false.

Contingency Example

The statement (p \Rightarrow q) \land (p \lor q) is a contingency

p	q	$p \Rightarrow q$	$ p \lor q $	$(p \Rightarrow q) \land (p \lor q)$
T	T	Т	Т	T
T	F	F	T	F
F	T	T	T	T
F	F	T	F	F

Logically equivalent

- Two propositions are logically equivalent or simply equivalent if p ⇔ q is a tautology.
- Denoted p ≡ q

Example of Logical Equivalence

Columns 5 and 8 are equivalent, and therefore, p "if and only if" q

p q r	$\left \begin{array}{c} q \wedge \\ r \end{array}\right $	$ \begin{vmatrix} p \lor \\ (q \land r) \end{vmatrix} $	p ∨ q	$\left \begin{array}{c} p \lor \\ r \end{array}\right $	$(p \lor q) \land (p \lor r)$	$ \begin{array}{ c c } p \lor (q \land r) \Leftrightarrow \\ (p \lor q) \land (p \lor r) \end{array} $
TTT	Т	Т	T	Т	T	T
T T F	F	T	T	T	T	Т
T F T	F	T	T	T	T	Т
T F F	F	T	T	T	T	Т
F T T	Т	T	T	Т	Т	T
F T F	F	F	T	F	F	Т
F F T	F	F	F	Т	F	Т
F F F	F	F	F	F	F	Т

Additional Properties $(p \Rightarrow q) \equiv ((\sim p) \lor q)$

p	q	$ (p \Rightarrow q) $	~p	((~p) ∨ q)	$(p \Rightarrow q) \Leftrightarrow ((\sim p) \lor q)$
T	T	Т	F	Т	T
T	F	F	F	F	T
F	T	Т	T	Т	T
F	F	Т	T	T	T

Additional Properties $(p \Rightarrow q) \equiv (\sim q \Rightarrow \sim p)$

p	q	$(p \Rightarrow q)$	~q	~p	$(\sim q \Rightarrow \sim p)$	$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$
T	T	T	F	F	Т	T
T	F	F	Т	F	F	T
F	Т	T	F	Т	T	T
F	F	T	T	T	T	Т

CSCI 1900 Discrete Structures

Methods of Proof

Reading: Kolman, Section 2.3

Past Experience

Up to now we've used the following methods to write proofs:

- Used direct proofs with generic elements, definitions, and given facts
- Used proof by cases such as when we used truth tables

General Description of Process

- $p \Rightarrow q$ denotes "q logically follows from p"
- Implication may take the form $(p_1 \land p_2 \land p_3 \land ... \land p_n) \Rightarrow q$
- q logically follows from $p_1, p_2, p_3, ..., p_n$

General Description (continued)

The process is generally written as:

```
p_1
p_2
p_3
\vdots
p_n
```

Components of a Proof

- The p's are called hypotheses or premises
- q is called the conclusion
- Proof shows that if all of the p_i 's are true, then q has to be true
- If result is a tautology, then the implication
 p ⇒ q represents a universally correct
 method of reasoning and is called a *rule of inference*

Example of a Proof based on a Tautology

If p implies q and q implies r, then p implies r

```
p \Rightarrow q
q \Rightarrow r
\therefore p \Rightarrow r
```

- By replacing the bar under q ⇒ r with the "⇒", the proof above becomes ((p ⇒ q) ∧ (q ⇒ r))
 ⇒ (p ⇒ r)
- The next slide shows that this is a tautology and therefore is universally valid.

Tautology Example (continued)

p	q	r	$ p \Rightarrow q $	$q \Rightarrow r$	$(p \Rightarrow q) \land (q \Rightarrow r)$	$p \Rightarrow r$	$((p \Rightarrow q) \land (q \Rightarrow r))$ $\Rightarrow (p \Rightarrow r)$
T	T	T	Т	T	T	Т	T
T	T	F	Т	F	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	Т	F	F	T	T
F	F	T	Т	Т	T	T	T
F	F	F	Т	Т	T	Т	T

Equivalences

- Some mathematical theorems are equivalences, i.e., p ⇔ q.
- The proof of such a theorem is equivalent with proving both $p \Rightarrow q$ and $q \Rightarrow p$

modus ponens form (the method of asserting):

- Example:
 - p: a man used the toilet
 - q: the toilet seat is up
 - $-p \Rightarrow q$: If a man used the toilet, the seat was left up
- Supported by the tautology (p ∧ (p ⇒ q)) ⇒ q

modus ponens (continued)

p	q	$ (p \Rightarrow q)$	$p \land (p \Rightarrow q)$	$(p \land (p \Rightarrow q)) \Rightarrow q$
T	T	T	T	T
T	F	F	F	f T
F	T	T	F	T
F	F	T	F	T

Invalid Conclusions from Invalid Premises

 Just because the format of the argument is valid does not mean that the conclusion is true.
 A premise may be false. For example:

Acorns are money

If acorns were money, no one would have to work

No one has to work

- Argument is valid since it is in modus ponens form
- Conclusion is false because premise p is false

Invalid Conclusion from Invalid Argument

- Sometimes, an argument that looks like modus ponens is actually not in the correct form. For example:
- If tuition was free, enrollment would increase Enrollment increased
 - ... Tuition is free
- Argument is invalid since its form is:

Invalid Argument (continued)

Truth table shows that this is not a tautology:

p	q	$ (p \Rightarrow q) $	$ (p \Rightarrow q) \land $	$\big ((p \Rightarrow q) \wedge q) \Rightarrow \big $
			q	p
T	T	T	T	T
T	F	F	F	T
F	T	T	T	\mathbf{F}
F	F	T	F	T

Indirect Method

Another method of proof is to use the tautology:

$$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$$

The form of the proof is:

Indirect Method Example

- p: My e-mail address is available on a web site
- q: I am getting spam
- p ⇒ q: If my e-mail address is available on a web site, then I am getting spam
- ~q ⇒ ~p: If I am not getting spam, then my e-mail address must not be available on a web site
- This proof says that if I am not getting spam, then my e-mail address is not on a web site.

Another Indirect Method Example

- Prove that if the square of an integer is odd, then the integer is odd too.
- p: n² is odd
- q: n is odd
- $\sim q \Rightarrow \sim p$: If n is even, then n^2 is even.
- If n is even, then there exists an integer m for which $n = 2 \times m$. n^2 therefore would equal $(2 \times m)^2 = 4 \times m^2$ which must be even.

Proof by Contradiction

- Another method of proof is to use the tautology $(p \Rightarrow q) \land (\sim q) \Rightarrow (\sim p)$
- The form of the proof is:

Proof by Contradiction (continued)

T T F F T T F F F T		p q		~q	$\left \begin{array}{c} (p \Longrightarrow q) \land \\ \sim q \end{array}\right $	~p	$(p \Rightarrow q) \land (\sim q) \Rightarrow (\sim p)$
T F T F T T	T T	T T		F	<u> </u>	F	T
	T F	T F	F	T	F	F	T
FTTFTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	F T	F T	T	F	F	T	T
FFTTTTTTTT	F F	F F	T	T	T	T	T