
Remind
worst-case 

running times 
on average

Selection sort Θ(n2) Θ(n2)

Insertion sort Θ(n2) Θ(n2)

Quicksort Θ(n2) Θ(n lg n)

Merge sort Θ(n lg n) Θ(n lg n) 



A Lower Bound for Sorting

1. Rules for sorting.

2. The lower bound on comparison sorting.

3. Beating the lower bound with counting sort.

4. Radix sort.



“if this element’s sort key is less than this 
other element’s sort key, then do something, 
and otherwise either do something else or 
do nothing else.”

Rules for sorting

Does a sorting algorithm use only this form? 

No.



1) each sort key is either 1 or 2, 

2) the elements consist of only sort keys. 

In this simple situation, we can sort n elements 
in only Θ(n) time. 

Rules for sorting



=>go through every element and count how many 
of them are 1s; 
let’s say that k elements have the value 1.

=>go through the array, filling the value 1 into 
the first k positions and then filling the value 2 
into the last n - k positions.

Rules for sorting



Rules for sorting



The lower bound on comparison sorting

A comparison sort is any sorting algorithm 
that determines the sorted order only by 
comparing pairs of elements.
The four sorting algorithms from the 
previous lecture are comparison sorts (but 
REALLY-SIMPLE-SORT is not).



The lower bound on comparison sorting

This is the lower bound: 
• In the worst case, any comparison sorting 

algorithm for n elements requires Ω(n lg n) 
comparisons between pairs of elements. 

What is Ω-notation? 



The lower bound on comparison sorting

We write: Ω-notation (It gives a lower bound)
We say: “for sufficiently large n, any 
comparison sorting algorithm requires at 
least (cnlg n) comparisons in the worst case, 
for some constant c”.



The lower bound on comparison sorting

1) Lower bound is saying something only 
about the worst case; the best case may be 
Θ(n) time. 
In the worst case Ω(n lg n) comparisons are 
necessary.
It is an existential lower bound.



The lower bound on comparison sorting

A universal lower bound => applies to all 
inputs.
For sorting the only universal lower bound is 
Ω(n).



The lower bound on comparison sorting

2) The lower bound does not depend on the 
particular algorithm, as long as it’s a 
comparison sorting algorithm. 
The lower bound applies to every 
comparison sorting algorithm, no matter how 
simple or complex.



Beating the lower bound with 
counting sort

there are only 
two possible 
values for the 

sort keys

each element 
consists of 

only a sort key

without 
associated 

data

we can sort n 
elements in 
only Θ(n) 

time

Procedure REALLY-SIMPLE-SORT



Beating the lower bound with 
counting sort

For m different 
possible values for 

the sort keys

they are integers in 
a range of m 
consecutive 

integers  (0 to m-1)

the elements to 
have associated 

data

Procedure COUNT-KEYS-EQUAL



Beating the lower bound with 
counting sort

Example. Let’s we know that the sort keys are 

integers in the range 0 to m-1. 

And let’s we know:

• three elements have sort keys equal to 5; 

• six elements have sort keys less than 5 (that is, 
in the range 0 to 4).

Then in the sorted array the elements with sort 
keys equal to 5 should occupy positions 7, 8, 9.



Beating the lower bound with 
counting sort

Generalize.
If  k elements have sort keys equal to x and 
that l elements have sort keys less than x, 
then the elements with sort keys equal to x 
should occupy positions l+1 through l+k in 
the sorted array.



Beating the lower bound with 
counting sort

What should be done? 

We want to compute, for each possible sort-key 
value, 

1) how many elements have sort keys less than 
that value and 

2) how many elements have sort keys equal to 
that value.



Beating the lower bound with counting sort

Computing: how many elements have sort keys 
equal to that value.



Beating the lower bound with 
counting sort

Notice that COUNT-KEYS-EQUAL never compares 
sort keys with each other.

It uses sort keys only to index into the equal 
array.



Beating the lower bound with 
counting sort

Since the first loop (step 2) makes m iterations, 
the second loop (step 3) makes n iterations, and 
each iteration of each loop takes constant time, 
COUNT-KEYS-EQUAL takes Θ(m+n) time. 

If m is a constant, then COUNT-KEYS-EQUAL 
takes Θ(n) time.



Beating the lower bound with counting sort

Computing: how many elements have sort keys 
less than each value.



Beating the lower bound with 
counting sort

Example.

Suppose that m = 7, so that all sort keys are 
integers in the range 0 to 6. 

Array A with n = 10 elements: 

A = (4; 1; 5; 0; 1; 6; 5; 1; 5; 3). 



Beating the lower bound with 
counting sort

Then equal = (1; 3; 0; 1; 1; 3; 1) 

A = (4; 1; 5; 0; 1; 6; 5; 1; 5; 3) 

Because

• How many elements in the array A equal to 0? 
=> 1 => then equal[0]=1

• How many elements in the array A equal to 1? 
=> 3 => then equal[1]=3 

• How many elements in the array A equal to 2? 
=> 0 => then equal[2]=0 



Beating the lower bound with 
counting sort

less = (0; 1; 4; 4; 5; 6; 9)equal = (1; 3; 0; 1; 1; 3; 1) 

Because

• less[0]= 0

• less[1]= equal [0] = 1

• less[2]= equal [0] + equal [1] =1 + 3 = 4

• less[3]= equal [0] + equal [1] + equal [2] = 1 + 
+3 + 0 = 4

• less[4]= equal [0] + equal [1] + equal [2] + 
+equal [3] = 1 + 3 + 0 + 1 = 5





Example.









Beating the lower bound with 
counting sort

• The idea is that, as we go through the array A 
from start to end, next[j] gives the index in the 
array B of where the next element of A whose 
key is j should go.

• Recall from earlier that if l elements have sort 
keys less than x, then the k elements whose 
sort keys equal x should occupy positions l+1 
through l+k.



Beating the lower bound with 
counting sort

• The loop of step 2 sets up the array next so 
that, at first, next[j]= l+1, where l= l+k.

• The loop of step 3 goes through array A from 
start to end.



Beating the lower bound with 
counting sort

• For each element A[i], step 3A stores A[i] into 
key, step 3B computes index as the index in 
array B where A[i] should go, and step 3C 
moves A[i] into this position in B.

• Because the next element in array A that has 
the same sort key as A[i] (if there is one) 
should go into the next position of B, step 3D 
increments next[key].



Beating the lower bound with 
counting sort

How long does REARRANGE take?

• The loop of step 2 runs in Θ(m) time, 

• and the loop of step 3 runs in Θ(n) time. 

• Like COUNT-KEYSEQUAL, therefore, 
REARRANGE runs in Θ(m+n) time, 

• which is Θ(n) if m is a constant.



Beating the lower bound with 
counting sort

Counting sort



Beating the lower bound with 
counting sort

The running times of 

COUNT-KEYS-EQUAL                          Θ(m+n);

COUNTKEYS-LESS                                Θ(m);

REARRANGE                                         Θ(m+n);

COUNTING-SORT runs in time          Θ(m+n) 

or Θ(n) when m  is a constant.



Beating the lower bound with 
counting sort

Counting sort beats the lower bound of Ω(n lg n) 
for comparison sorting because it never 
compares sort keys against each other. 

Instead, it uses sort keys to index into arrays, 
which it can do because the sort keys are small 
integers.



Beating the lower bound with 
counting sort

If the sort keys were real numbers with 
fractional parts, or they were character strings, 
then we could not use counting sort.



Beating the lower bound with 
counting sort

The running time is Θ(n) if m is a constant. 

When would m be a constant?

 One example would be if I were sorting 
exams by grade. 



Beating the lower bound with 
counting sort

Sorting exams by grade. 

The grades range from 0 to 10, 

but the number of students varies. 

Using counting sort to sort the exams of n 
students in Θ(n) time, since m = 11 (the range 
being sorted is 0 to m-1) is a constant.



Beating the lower bound with 
counting sort

Counting sort has another important property: 

it is stable. 

The stable sort breaks ties between two 
elements with equal sort keys by placing first in 
the output array whichever element appears 
first in the input array.



Radix sort

Let’s you had to sort strings of characters of 
some fixed length. 

For example, the confirmation code is XI7FS6. 

=>36 values (26 letters plus 10 digits)

=>366 = 2,176,782,336 possible confirmation 
codes



Radix sort

36 characters => numeric from 0 to 35

The code for a digit   =>   the digit itself.

The codes for letters start at 10 for A and run 
through 35 for Z.



Radix sort

Simple example.

Confirmation code comprises two characters.

1) using the rightmost character as the sort key

2) using the leftmost character as the sort key

<F6; E5; R6; X6; X2; T5; F2; T3>

1) <X2; F2; T3; E5; T5; F6; R6; X6>

2) <E5; F2; F6; R6; T3; T5; X2; X6>



Radix sort

Simple example. BUT
1) using the leftmost character as the sort key
2) using the rightmost character as the sort key
<F6; E5; R6; X6; X2; T5; F2; T3>

1) <E5; F6; F2; R6; T5; T3; X6; X2>
2) <F2; X2; T3; E5; T5; F6; R6; X6>
It is incorrect. Why? => Using a stable sorting 
method



Radix sort
Example. <XI7FS6; PL4ZQ2; 
JI8FR9;XL8FQ6;PY2ZR5;KV7WS9; JL2ZV3; 
KI4WR2>



Radix sort

In the radix sort algorithm 

the time to sort on one digit is Θ(m+n). 

And the time to sort all d digits is Θ(d(m+n)).


