
Remind
worst-case

running times
on average

Selection sort Θ(n2) Θ(n2)

Insertion sort Θ(n2) Θ(n2)

Quicksort Θ(n2) Θ(n lg n)

Merge sort Θ(n lg n) Θ(n lg n)

A Lower Bound for Sorting

1. Rules for sorting.

2. The lower bound on comparison sorting.

3. Beating the lower bound with counting sort.

4. Radix sort.

“if this element’s sort key is less than this
other element’s sort key, then do something,
and otherwise either do something else or
do nothing else.”

Rules for sorting

Does a sorting algorithm use only this form?

No.

1) each sort key is either 1 or 2,

2) the elements consist of only sort keys.

In this simple situation, we can sort n elements
in only Θ(n) time.

Rules for sorting

=>go through every element and count how many
of them are 1s;
let’s say that k elements have the value 1.

=>go through the array, filling the value 1 into
the first k positions and then filling the value 2
into the last n - k positions.

Rules for sorting

Rules for sorting

The lower bound on comparison sorting

A comparison sort is any sorting algorithm
that determines the sorted order only by
comparing pairs of elements.
The four sorting algorithms from the
previous lecture are comparison sorts (but
REALLY-SIMPLE-SORT is not).

The lower bound on comparison sorting

This is the lower bound:
• In the worst case, any comparison sorting

algorithm for n elements requires Ω(n lg n)
comparisons between pairs of elements.

What is Ω-notation?

The lower bound on comparison sorting

We write: Ω-notation (It gives a lower bound)
We say: “for sufficiently large n, any
comparison sorting algorithm requires at
least (cnlg n) comparisons in the worst case,
for some constant c”.

The lower bound on comparison sorting

1) Lower bound is saying something only
about the worst case; the best case may be
Θ(n) time.
In the worst case Ω(n lg n) comparisons are
necessary.
It is an existential lower bound.

The lower bound on comparison sorting

A universal lower bound => applies to all
inputs.
For sorting the only universal lower bound is
Ω(n).

The lower bound on comparison sorting

2) The lower bound does not depend on the
particular algorithm, as long as it’s a
comparison sorting algorithm.
The lower bound applies to every
comparison sorting algorithm, no matter how
simple or complex.

Beating the lower bound with
counting sort

there are only
two possible
values for the

sort keys

each element
consists of

only a sort key

without
associated

data

we can sort n
elements in
only Θ(n)

time

Procedure REALLY-SIMPLE-SORT

Beating the lower bound with
counting sort

For m different
possible values for

the sort keys

they are integers in
a range of m
consecutive

integers (0 to m-1)

the elements to
have associated

data

Procedure COUNT-KEYS-EQUAL

Beating the lower bound with
counting sort

Example. Let’s we know that the sort keys are

integers in the range 0 to m-1.

And let’s we know:

• three elements have sort keys equal to 5;

• six elements have sort keys less than 5 (that is,
in the range 0 to 4).

Then in the sorted array the elements with sort
keys equal to 5 should occupy positions 7, 8, 9.

Beating the lower bound with
counting sort

Generalize.
If k elements have sort keys equal to x and
that l elements have sort keys less than x,
then the elements with sort keys equal to x
should occupy positions l+1 through l+k in
the sorted array.

Beating the lower bound with
counting sort

What should be done?

We want to compute, for each possible sort-key
value,

1) how many elements have sort keys less than
that value and

2) how many elements have sort keys equal to
that value.

Beating the lower bound with counting sort

Computing: how many elements have sort keys
equal to that value.

Beating the lower bound with
counting sort

Notice that COUNT-KEYS-EQUAL never compares
sort keys with each other.

It uses sort keys only to index into the equal
array.

Beating the lower bound with
counting sort

Since the first loop (step 2) makes m iterations,
the second loop (step 3) makes n iterations, and
each iteration of each loop takes constant time,
COUNT-KEYS-EQUAL takes Θ(m+n) time.

If m is a constant, then COUNT-KEYS-EQUAL
takes Θ(n) time.

Beating the lower bound with counting sort

Computing: how many elements have sort keys
less than each value.

Beating the lower bound with
counting sort

Example.

Suppose that m = 7, so that all sort keys are
integers in the range 0 to 6.

Array A with n = 10 elements:

A = (4; 1; 5; 0; 1; 6; 5; 1; 5; 3).

Beating the lower bound with
counting sort

Then equal = (1; 3; 0; 1; 1; 3; 1)

A = (4; 1; 5; 0; 1; 6; 5; 1; 5; 3)

Because

• How many elements in the array A equal to 0?
=> 1 => then equal[0]=1

• How many elements in the array A equal to 1?
=> 3 => then equal[1]=3

• How many elements in the array A equal to 2?
=> 0 => then equal[2]=0

Beating the lower bound with
counting sort

less = (0; 1; 4; 4; 5; 6; 9)equal = (1; 3; 0; 1; 1; 3; 1)

Because

• less[0]= 0

• less[1]= equal [0] = 1

• less[2]= equal [0] + equal [1] =1 + 3 = 4

• less[3]= equal [0] + equal [1] + equal [2] = 1 +
+3 + 0 = 4

• less[4]= equal [0] + equal [1] + equal [2] +
+equal [3] = 1 + 3 + 0 + 1 = 5

Example.

Beating the lower bound with
counting sort

• The idea is that, as we go through the array A
from start to end, next[j] gives the index in the
array B of where the next element of A whose
key is j should go.

• Recall from earlier that if l elements have sort
keys less than x, then the k elements whose
sort keys equal x should occupy positions l+1
through l+k.

Beating the lower bound with
counting sort

• The loop of step 2 sets up the array next so
that, at first, next[j]= l+1, where l= l+k.

• The loop of step 3 goes through array A from
start to end.

Beating the lower bound with
counting sort

• For each element A[i], step 3A stores A[i] into
key, step 3B computes index as the index in
array B where A[i] should go, and step 3C
moves A[i] into this position in B.

• Because the next element in array A that has
the same sort key as A[i] (if there is one)
should go into the next position of B, step 3D
increments next[key].

Beating the lower bound with
counting sort

How long does REARRANGE take?

• The loop of step 2 runs in Θ(m) time,

• and the loop of step 3 runs in Θ(n) time.

• Like COUNT-KEYSEQUAL, therefore,
REARRANGE runs in Θ(m+n) time,

• which is Θ(n) if m is a constant.

Beating the lower bound with
counting sort

Counting sort

Beating the lower bound with
counting sort

The running times of

COUNT-KEYS-EQUAL Θ(m+n);

COUNTKEYS-LESS Θ(m);

REARRANGE Θ(m+n);

COUNTING-SORT runs in time Θ(m+n)

or Θ(n) when m is a constant.

Beating the lower bound with
counting sort

Counting sort beats the lower bound of Ω(n lg n)
for comparison sorting because it never
compares sort keys against each other.

Instead, it uses sort keys to index into arrays,
which it can do because the sort keys are small
integers.

Beating the lower bound with
counting sort

If the sort keys were real numbers with
fractional parts, or they were character strings,
then we could not use counting sort.

Beating the lower bound with
counting sort

The running time is Θ(n) if m is a constant.

When would m be a constant?

 One example would be if I were sorting
exams by grade.

Beating the lower bound with
counting sort

Sorting exams by grade.

The grades range from 0 to 10,

but the number of students varies.

Using counting sort to sort the exams of n
students in Θ(n) time, since m = 11 (the range
being sorted is 0 to m-1) is a constant.

Beating the lower bound with
counting sort

Counting sort has another important property:

it is stable.

The stable sort breaks ties between two
elements with equal sort keys by placing first in
the output array whichever element appears
first in the input array.

Radix sort

Let’s you had to sort strings of characters of
some fixed length.

For example, the confirmation code is XI7FS6.

=>36 values (26 letters plus 10 digits)

=>366 = 2,176,782,336 possible confirmation
codes

Radix sort

36 characters => numeric from 0 to 35

The code for a digit => the digit itself.

The codes for letters start at 10 for A and run
through 35 for Z.

Radix sort

Simple example.

Confirmation code comprises two characters.

1) using the rightmost character as the sort key

2) using the leftmost character as the sort key

<F6; E5; R6; X6; X2; T5; F2; T3>

1) <X2; F2; T3; E5; T5; F6; R6; X6>

2) <E5; F2; F6; R6; T3; T5; X2; X6>

Radix sort

Simple example. BUT
1) using the leftmost character as the sort key
2) using the rightmost character as the sort key
<F6; E5; R6; X6; X2; T5; F2; T3>

1) <E5; F6; F2; R6; T5; T3; X6; X2>
2) <F2; X2; T3; E5; T5; F6; R6; X6>
It is incorrect. Why? => Using a stable sorting
method

Radix sort
Example. <XI7FS6; PL4ZQ2;
JI8FR9;XL8FQ6;PY2ZR5;KV7WS9; JL2ZV3;
KI4WR2>

Radix sort

In the radix sort algorithm

the time to sort on one digit is Θ(m+n).

And the time to sort all d digits is Θ(d(m+n)).

