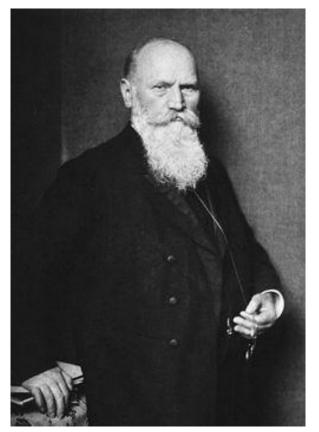
Митоз(от древнегреч. «митос» – нить)

Презентацию выполнила: Климчук Татьяна МФ-106

История создания.



Áвгуст Шле́йхер Предложил термин кариокинез (1879)

Митоз (кариокинез) — это деление клеточного ядра при котором образуются два дочерних ядра с такими же наборами хромосом, которые имели родительские клетки.

Вальтер

Для обозначения процесса непрямого деления клетки ввёл термин «митоз»

Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и

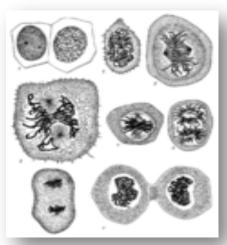
передачи

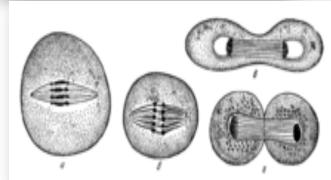
ДНК

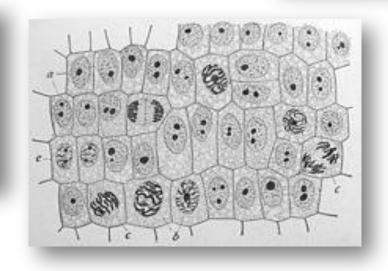
Плечо

хромосомы

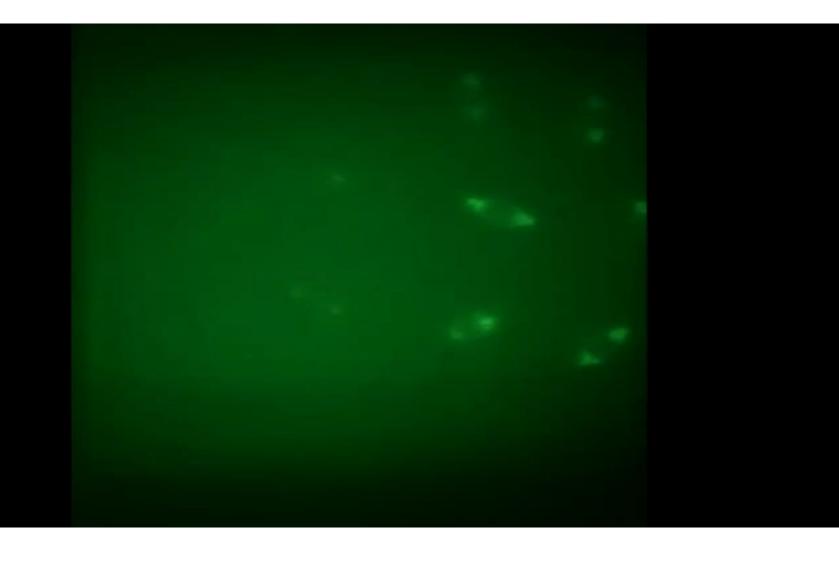
Шентроме


Генрих Вильгельм Готфрид Вальдейер мин хромосома


Представления различных ученых о делении клетки.


Деление клеток по Э. Руссову (1872)

Деление клеток по В. Флеммингу (1882)

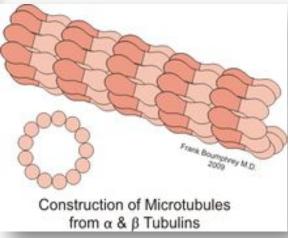

Деление клеток по Э. Страсбургеру (1875)

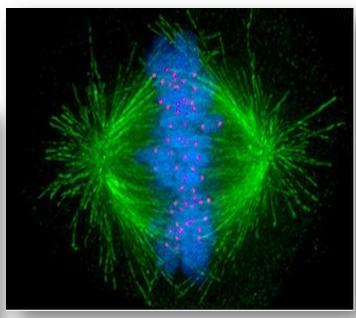
Деление клеток по Э. Б. Уилсону (1900)

Так что же такое митоз?

Мито́з (др.-греч.μίτος — нить) — непрямое деление клетки, наиболее распространённый способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений

Аппарат клеточного


Веретено деления — динамична труда фрорая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления межротрубочки — белковые внутриклеточные структуры, входящие в состав цитоскелета.

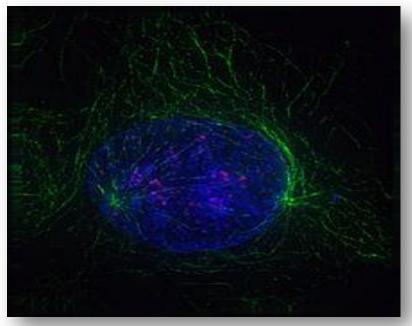

Центромера — участок хромосомы, характеризующийся специфической последовательностью нуклеотидов и структурой. Центромера играет важную роль в процессе деления клеточного ядра и в контроле экспрессии **₹₹Н₽Фтохор** — белковая структура на хромосоме, к которой крепятся волокна веретена деления во время деления клетки. Кинетохоры

играют важнейшую роль при сегрегации хромосом для последующего

разделения родительской клетки на две дочерние



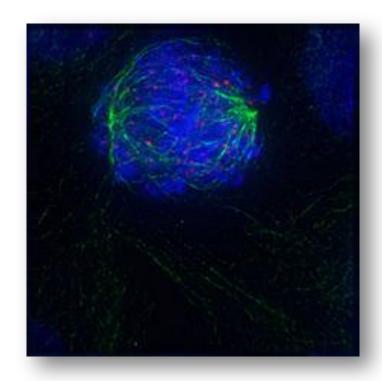
Фазы митоза:


- 1. Профаза
- 2. Прометафаз а
- 3. Метафаза
- 4. Анафаза
- 5. Телофаза

•Временной ход митоза и цитокинеза, типичный для клетки млекопитающего. Точные цифры для разных клеток различны. Цитокинез берёт своё начало в анафазе и завершается, как правило, к окончанию телофазы

Профаза

В профазе происходит конденс ация гомологичных (парных) хро мосом и начинается Формирование веретена деления. В клетках жи вотных начинается расхождени е пары центриолей (полюсов ве ретена).

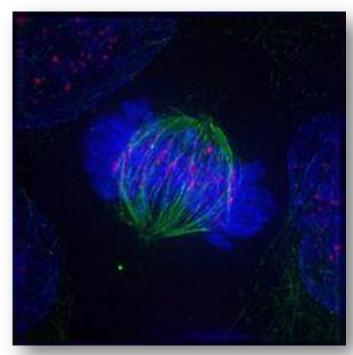


Прометафаза

Прометафаза начинается с разру шения ядерной оболочки. Хромос омы начинают двигаться и их кине тохоры

вступают в контакт с микротрубоч ками веретена деления, а полюса продолжают расхождение друг от друга. К

концу прометафазы формируется веретено деления.

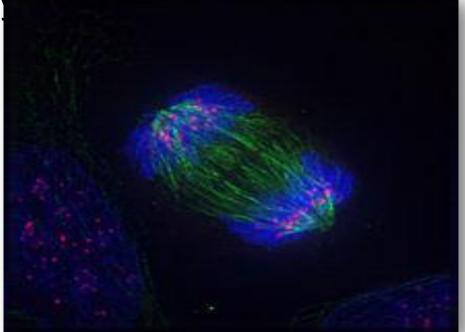


Метафаза

В **метафазе** движения хромосом почти полнос тью замирают, и кинетохоры хромосом распола гаются на«экваторе»

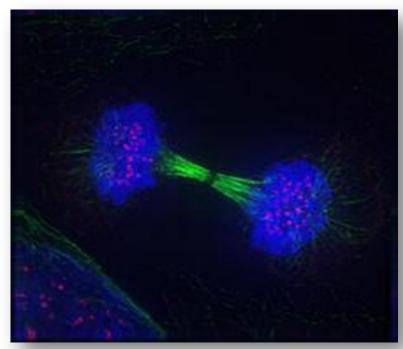
(на равном расстоянии от «полюсов» ядра) в од ной плоскости, образуя так называемуюметаф азную пластинку. Важно отметить, что они оста ются в таком положении в течение довольно длительного времени. В это время в клетке про исходят существенные перестройки, которые « разрешают»

последующее расхождение хромосом. Обычно в связи с этим метафаза — наиболее удобное в ремя для подсчета хромосомных чисел.



Анафаза.

В анафазе хромосомы делятся (со единение в районе центромеры ра зрушается) и расходятся к полюса м


деления. Параллельно полюса вер

етена также расходятся друуга.

Телофаза.

В телофазе происходит разру шение веретена деления и образование ядерной оболоч ки вокруг двух группхромосом, к оторые деконденсируются и образуют дочерние ядра.

Значение митоза.

Рост и развитие. Количество клеток в организме в процессе роста увеличивается благодаря митозу. Это лежит в развитии многоклеточного организма из единственной клетки — зиготы, а также роста многоклеточного организма.

Перемещение клеток. В некоторых органах организма, например, коже и пищеварительном тракте, клетки постоянно отшелушиваются и заменяются новыми. Новые клетки образуются путём митоза, а потому являются точными копиями своих предшественников. Схожим путём происходит замена красных кровяных клеток —эритроцитов, имеющих короткую продолжительность жизни — 4 месяца, а новые эритроциты формируются путём митоза.

Регенерация. Некоторые организмы способны восстанавливать утраченные части тела. В этих случаях образование новых клеток часто идёт путём митоза. Например, благодаря митозу морская звезда восстанавливает утраченные лучи.

Бесполое размножение. Некоторые организмы образуют генетически идентичное потомство путём бесполого размножения. Например, гидра размножается бесполым способом при помощи почкования. Поверхностные клетки гидры подвергаются митозу и образуют скопления клеток, называемые почками. Митоз продолжается и в клетках почки, и она вырастает во взрослую особь. Сходное клеточное деление происходит при вегетативном