
IITU

Neural Networks

Compiled by
G. Pachshenko

 Pachshenko
 Galina Nikolaevna

 Associate Professor
of Information System
Department,
 Candidate of
Technical Science

Week 4
Lecture 4

Topics
□ Single-layer neural networks
□ Multi-layer neural networks
□ Single perceptron
□ Multi-layer perceptron
□ Hebbian Learning Rule
□ Back propagation
□ Delta-rule
□ Weight adjustment
□ Cost Function
□ Сlassification (Independent Work)

 Single-layer neural
networks

Multi-layer neural networks

Single perceptron
The perceptron computes a
single output from multiple
real-valued inputs by forming a linear
combination according to its
input weights and then possibly putting
the output through activation function.

Single perceptron.

Mathematically this can be written as

Single perceptron.

Task 1:
Write a program that finds output of a
single perceptron.

Note:
 Use bias. The bias shifts the decision
boundary away from the origin and does
not depend on any input value.

Multilayer perceptron

A multilayer perceptron (MLP) is a
class of feedforward artificial neural
network.

Multilayer perceptron

Structure

• nodes that are no target of any
connection are called input neurons.

• nodes that are no source of any
connection are called output
neurons.
A MLP can have more than one
output neuron.
The number of output neurons
depends on the way the target values
(desired values) of the training
patterns are described.

• all nodes that are neither input
neurons nor output neurons are
called hidden neurons.

• all neurons can be organized in
layers, with the set of input layers
being the first layer.

The original Rosenblatt's perceptron
used a Heaviside step function as the
activation function.

Nowadays, in multilayer networks, the
activation function is often chosen to be
the sigmoid function

or the hyperbolic tangent

They are related by

These functions are used because they
are mathematically convenient.

An MLP consists of at least three layers
of nodes.

Except for the input nodes, each node is
a neuron that uses a
nonlinear activation function.

MLP utilizes a supervised learning
technique called backpropagation for
training.

Hebbian Learning Rule

 Delta rule

Backpropagation algorithm

Hebbian Learning Rule
(Hebb's rule)
The Hebbian Learning Rule (1949)
is a learning rule that specifies how
much the weight of the connection
between two units should be increased
or decreased in proportion to the
product of their activation.

Hebbian Learning Rule
(Hebb's rule)

Delta rule
(proposed in 1960)

The backpropagation algorithm was
originally introduced in the 1970s, but
its importance wasn't fully appreciated
until a famous 1986 paper by David
Rumelhart, Geoffrey Hinton, and Ronald
Williams.

That paper describes several neural
networks where backpropagation works
far faster than earlier approaches to
learning, making it possible to use
neural nets to solve problems which had
previously been insoluble.

Supervised Backpropagation – The
mechanism of backward error
transmission (delta learning rule) is
used to modify the weights of the
internal (hidden) and output layers

Back propagation
The back propagation learning algorithm
uses the delta-rule.

What this does is that it computes the
deltas, (local gradients) of each neuron
starting from the output neurons and
going backwards until it reaches the
input layer.

The delta rule is derived by attempting
to minimize the error in the output of
the neural network through gradient
descent.

To compute the deltas of the output
neurons though we first have to get the
error of each output neuron.

That’s pretty simple, since the
multi-layer perceptron is a supervised
training network so the error is the
difference between the network’s output
and the desired output.

ej(n) = dj(n) – oj(n)

where e(n) is the error vector, d(n) is the desired
output vector and o(n) is the actual output
vector.

Now to compute the deltas:

deltaj
(L)(n) = ej

(L)(n) * f'(uj
(L)(n)) ,

for neuron j in the output layer L

where f'(uj
(L)(n)) is the derivative of the

value of the jth neuron of layer L

The same formula:

Weight adjustment

Having calculated the deltas for all the
neurons we are now ready for the third
and final pass of the network, this time
to adjust the weights according to the
generalized delta rule:

Weight adjustment

For

Note: For sigmoid activation
function
Derivative of the function:

S'(x) = S(x)*(1 - S(x))

Cost Function
We need a function that will minimize the parameters over
our dataset. One common function that is often used
is mean squared error

□ Squared Error: which we can
minimize using gradient descent

□ A cost function is something you want
to minimize. For example, your cost
function might be the sum of squared
errors over your training set. Gradient
descent is a method for finding the
minimum of a function of multiple
variables. So you can use gradient
descent to minimize your cost
function.

Back-propagation is a gradient descent
over the entire networks weight vectors.

In practice, it often works well and can
run multiple times. It minimizes error
over all training samples.

Task 2:
Write a program that can
update weights of neural network using
backpropagation.

Thank you
for your attention!

