
IITU

Neural Networks

Compiled by 
G. Pachshenko



         Pachshenko 
         Galina Nikolaevna 

            Associate Professor 
of Information System 
Department,
            Candidate of     
Technical Science



Week 4
Lecture 4



Topics
□ Single-layer neural networks
□ Multi-layer neural networks
□ Single perceptron
□ Multi-layer perceptron
□ Hebbian Learning Rule
□ Back propagation
□ Delta-rule
□ Weight adjustment
□ Cost Function
□ Сlassification  (Independent Work)



 Single-layer neural 
networks



Multi-layer neural networks



Single perceptron
The perceptron computes a 
single output from multiple 
real-valued inputs by forming a linear 
combination according to its 
input weights and then possibly putting 
the output through activation function. 



Single perceptron.

Mathematically this can be written as



Single perceptron.



Task 1:
Write a program that finds output of a 
single perceptron.

Note:
 Use bias. The bias shifts the decision 
boundary away from the origin and does 
not depend on any input value.



Multilayer perceptron

A multilayer perceptron (MLP) is a 
class of feedforward artificial neural 
network. 



Multilayer perceptron



Structure

• nodes that are no target of any 
connection are called input neurons.



• nodes that are no source of any 
connection are called output 
neurons. 
A MLP can have more than one 
output neuron. 
The number of output neurons 
depends on the way the target values 
(desired values) of the training 
patterns are described.



• all nodes that are neither input 
neurons nor output neurons are 
called hidden neurons. 

• all neurons can be organized in 
layers, with the set of input layers 
being the first layer.



The original Rosenblatt's perceptron 
used a Heaviside step function as the 
activation function. 



Nowadays, in multilayer networks, the 
activation function is often chosen to be 
the  sigmoid function



or the hyperbolic tangent



They are related by



These functions are used because they 
are mathematically convenient.



An MLP consists of at least three layers 
of nodes.
 
Except for the input nodes, each node is 
a neuron that uses a 
nonlinear activation function.



MLP utilizes a supervised learning 
technique called backpropagation for 
training. 



Hebbian Learning Rule

                  Delta rule

Backpropagation algorithm 



Hebbian Learning Rule
(Hebb's rule)
The Hebbian Learning Rule (1949)
is a learning rule that specifies how 
much the weight of the connection 
between two units should be increased 
or decreased in proportion to the 
product of their activation. 



Hebbian Learning Rule
(Hebb's rule)





Delta rule
(proposed in 1960)



The backpropagation algorithm was 
originally introduced in the 1970s, but 
its importance wasn't fully appreciated 
until a famous 1986 paper by David 
Rumelhart, Geoffrey Hinton, and Ronald 
Williams. 



That paper describes several neural 
networks where backpropagation works 
far faster than earlier approaches to 
learning, making it possible to use 
neural nets to solve problems which had 
previously been insoluble. 



Supervised Backpropagation – The 
mechanism of backward error 
transmission (delta learning rule) is 
used to modify the weights of the 
internal (hidden) and output layers



Back propagation
The back propagation learning algorithm 
uses the delta-rule. 

What this does is that it computes the 
deltas, (local gradients) of each neuron 
starting from the output neurons and 
going backwards until it reaches the 
input layer. 



The delta rule is derived by attempting 
to minimize the error in the output of 
the neural network through gradient 
descent.



To compute the deltas of the output 
neurons though we first have to get the 
error of each output neuron. 



That’s pretty simple, since the 
multi-layer perceptron is a supervised 
training network so the error is the 
difference between the network’s output 
and the desired output.

ej(n) = dj(n) – oj(n)

where e(n) is the error vector, d(n) is the desired 
output vector and o(n) is the actual output 
vector. 



Now to compute the deltas:

deltaj
(L)(n) = ej

(L)(n) * f'(uj
(L)(n)) , 

for neuron j in the output layer L

where f'(uj
(L)(n)) is the derivative of the 

value of the jth neuron of layer L



The same formula:



Weight adjustment

Having calculated the deltas for all the 
neurons we are now ready for the third 
and final pass of the network, this time 
to adjust the weights according to the 
generalized delta rule:



Weight adjustment



For 



Note: For sigmoid activation 
function
Derivative of the function: 

S'(x) = S(x)*(1 - S(x))





Cost Function
We need a function that will minimize the parameters over 
our dataset. One common function that is often used 
is mean squared error 



□ Squared Error:  which we can 
minimize using gradient descent

□ A cost function is something you want 
to minimize. For example, your cost 
function might be the sum of squared 
errors over your training set. Gradient 
descent is a method for finding the 
minimum of a function of multiple 
variables. So you can use gradient 
descent to minimize your cost 
function. 



Back-propagation is a gradient descent 
over the entire networks weight vectors.
 
In practice, it often works well and can 
run multiple times. It minimizes error 
over all training samples.



Task 2:
Write a program that can 
update  weights of neural network using 
backpropagation.



Thank you 
for your attention!


