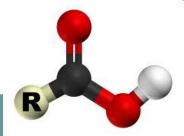
КАРБОНОВЫЕ КИСЛОТЫ И ИХ ГЕТЕРОФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ: ГИДРОКСИ- И ОКСОКАРБОНОВЫЕ КИСЛОТЫ


Классификация

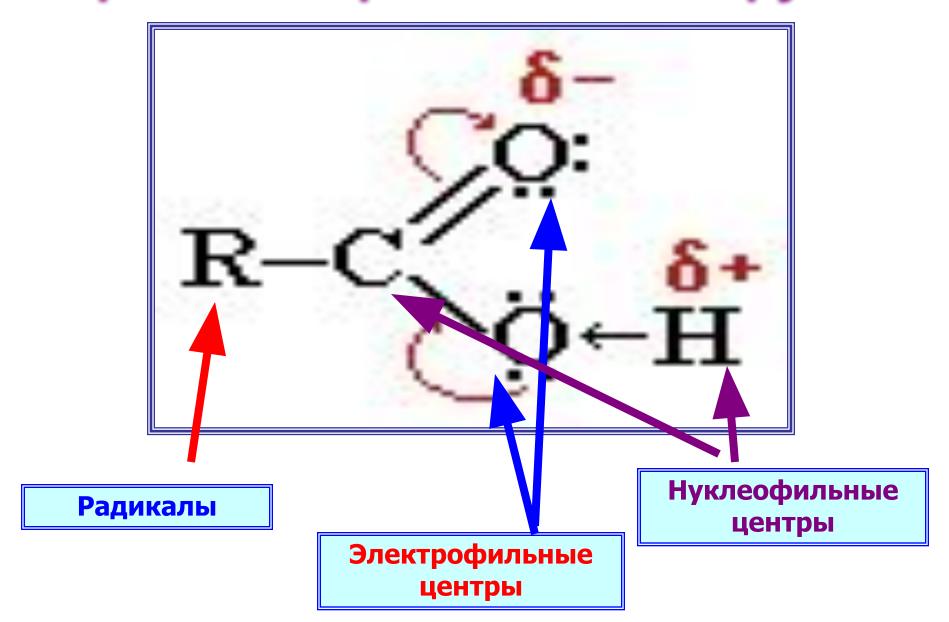
Карбоновыми кислотами называются соединения, содержащие карбоксильную группу —СООН.

$$R-C$$
O

Классификация

- 1. По числу карбоксильных групп: моно-, дикарбоновые кислоты и т.д.
- 2. В зависимости от строения радикала:
 - алифатические предельные (ациклические, циклические)
 - непредельные (содержат одну или несколько кратных связей)
 - ароматические (карбо- и гетероароматические)
- 3. В связи с присутствием в радикале других функциональных групп:
- гидроксикарбоновые (содержат одну или несколько гидроксильных групп)
- оксокарбоновые (содержат карбонильную группу альдегидную или кетоновую)
 - аминокислоты (содержат одну или несколько аминогрупп).

МОНОКАРБОНОВЫЕ КИСЛОТЫ



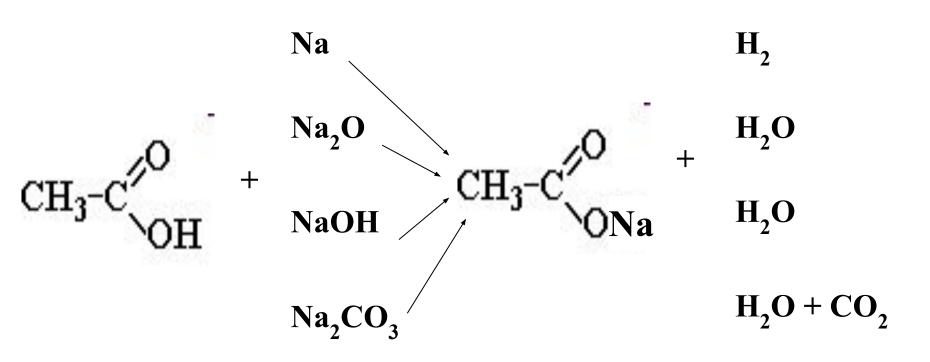
Тривиальные и систематические названия некоторых монокарбоновых кислот

Формула кислоты	Тривиальное название	Систематическое название	Название аниона (в солях кислоты)	Формула ацильной группы	Название ацильной группы
HC≤OH	Муравьиная кислота	Метановая кислота	Формиат	нс€О	Формил
CH3C≷OH	Уксусная кислота	Этановая кислота	Ацетат	CH ₃ C€ ^O	Ацетил
CH ₃ CH ₂ C≷OH	Пропионовая кислота	Пропановая кислота	Пропионат	CH ₃ CH ₂ C≪O	Пропионил
сн₃сн₂сн₂с≷ОН	н-Масляная кислота	Бутанован желота	Pyrixiat	cH ₃ CH ₂ CH ₂ C≷ ^O	Бутирил
CH_3 - CH - $C \stackrel{\bigcirc}{<_{O}}^{O}$	Изомасляная кислота	2-Метилпропановая кислота	Изобутират	CH_3 — CH — $C \lesssim 0$	Изобутирил
C ₁₅ H ₃₁ COOH	Пальмитиновая кислота	Гексадекановая кислота	Пальмитат	$_{\mathrm{C_{15}H_{31}C}} {\stackrel{\bullet}{<}}^{\mathrm{O}}$	Пальмитил
C ₁₇ H ₃₅ COOH	Стеариновая кислота	Октадекановая кислота	Стеарат	$_{\mathrm{C_{17}H_{35}C}}{\leqslant}^{\mathrm{O}}$	Стеарил
C _≤ OH	Бензойная кислота	Бензоилкарбоновая кислота	Бензоат	Ç [©]	Бензоил

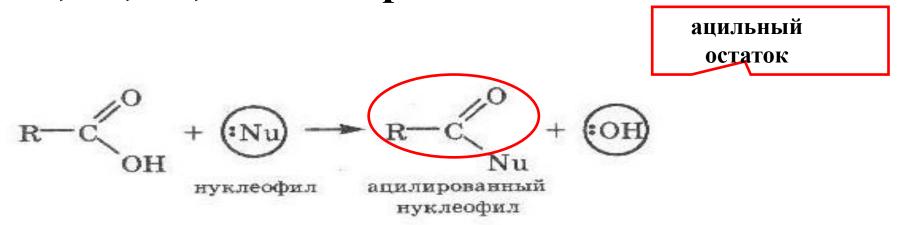
Строение карбоксильной группы

Сила КК зависит от природы R.

Электронодонорные (+I-эффект) ослабляют кислотные свойства (R—алкильные радикалы).


Электроноакценторные (Эвэффект) с усиливают (Hal, OH и др.).

Формула кислоты	СН₃СООН	нсоон	CICH ₂ COOH	CI ₂ CHCOOH	CI ₃ CCOOH
	Уксусная кислота	Муравьиная кислота	Хлоруксусная кислота	дихлоруксусная кислота	трихлоруксусная кислота
рКа	4,76	3,75	2,85	1,25	0,66
Увеличение кислотности					


Чем ниже рКа, тем сильнее кислота.

Кислотные свойства КК

Взаимодействие с Me; Me $_{x}O_{y}$; Me $(OH)_{y}$; солями слабых кислот:

Реакции ацилирования - это замещение любого атома или группы атомов на ацил. В зависимости от атома к которому присоединяют ацил различают С-, N-, O-, S- ацилирование

Ацилирование — реакция S_N по карбонильному углеродному атому, с образованием связи между ацильным остатком и нуклеофилом.

1. Галогенацилирование.

Образование галогенангидридов карбоновых кислот

$$O + SOCl_2 \longrightarrow O + SO_2 + HCl$$
 CH_3-C-Cl
 $Xлорангидрид$
(ацилхлорид)
$$O + PCl_5 \longrightarrow O + POCl_3 + HCl$$
 CH_3-C-Cl

2. О-ацилирование карбоновых кислот.

Образование ангидридов карбоновых кислот

$$_{\text{CH}_{3}-\text{C}-\text{OH}}^{\text{O}}$$
 + $_{\text{CH}_{3}-\text{C}-\text{Cl}}^{\text{O}}$ + $_{\text{CH}_{3}-\text{C}}^{\text{CH}_{3}-\text{C}}$ + $_{\text{CH}_{3}-\text{C}}^{\text{C}}$ + $_{\text{CH}_{3}-\text{C}}^{\text{O}}$ + $_{\text{CH}_{3}-\text{C}}^{\text$

$$2 \text{ CH}_3 - \text{C} - \text{OH}. + P_2 O_5 \xrightarrow{\text{CH}_3 - \text{C}} + 2 \text{HPO}_3$$

3. О-ацилирование спиртов.

Реакция этерификации (образование сложных эфиров)

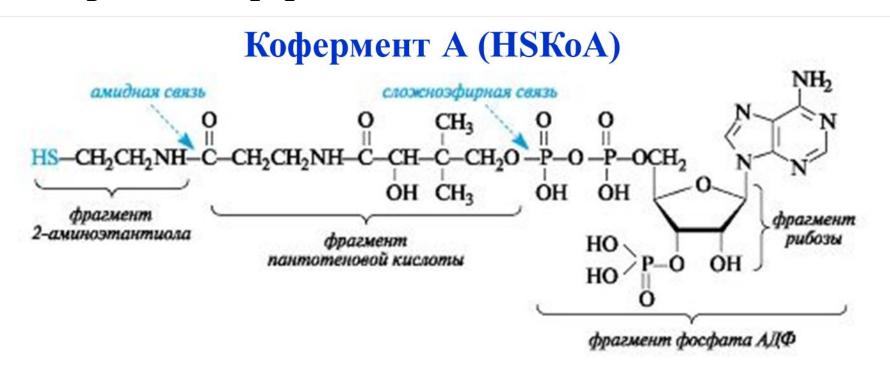
$$C_6H_5-C_{OH} + C_2H_5OH \longrightarrow C_6H_5-C_{OC_2H_5} + H_2O$$

бензойная кислота

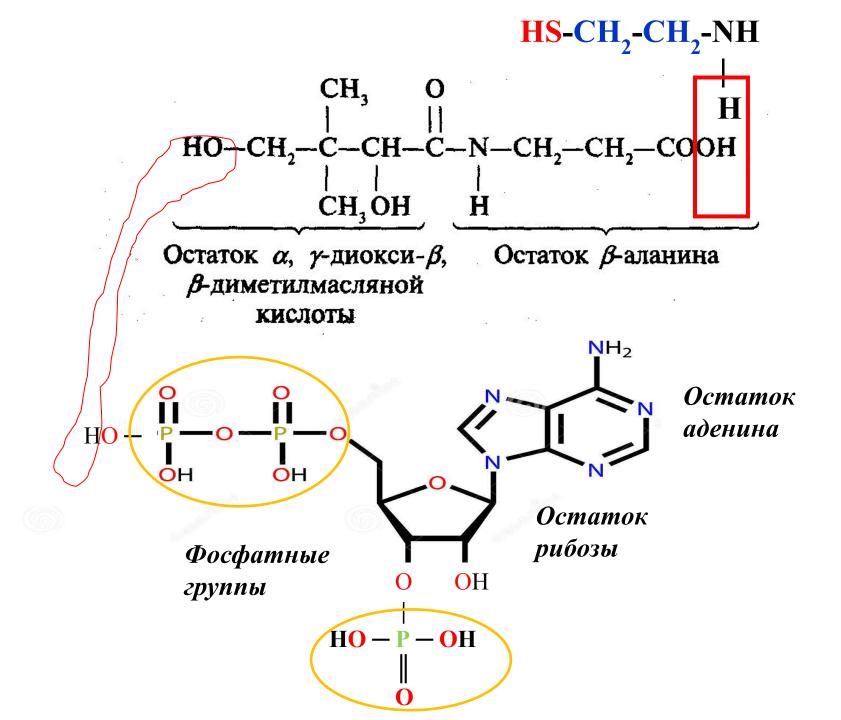
этилбензоат

4. N-ацилирование аминов.

Образование амидов карбоновых кислот


$${
m CH_3COOH + NH_3} \longrightarrow {
m CH_3COO^-NH_4^+} \xrightarrow{{
m t^0}\atop {
m -H_2O}} {
m CH_3-C} \stackrel{{
m O}}{\sim}_{{
m NH_2}\atop {
m ацетат}}$$
 киспота аммония

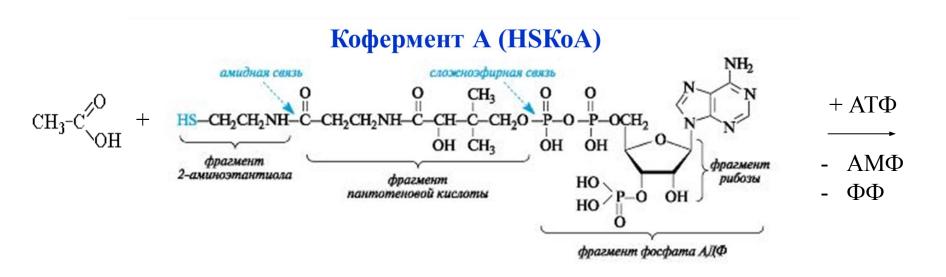
(этанамид, амид уксусной кислоты)


Реакция образования амидов играет большую роль в организме: за счет этой реакции происходит обезвреживание токсичного аммиака.

5. S-Ацилирование тиолов.

В метаболизме карбоновых кислот большую роль играет их способность при участии АТФ ацилировать кофермент А*

Кофермент A -сложное соединение, содержащее остаток 2-аминоэтантиола $HS-CH_2-CH_2-NH$ -, пантотеновую кислоту (витамин B_3) и фосфатное производное аденозина.



С жирными кислотами кофермент A, за счет тиольной группы (—SH), образует сложные тиоэфиры, называемые ацилкоферментами A (ацил-КоА или RCOSKoA):

Тривиальные и систематические названия некоторых монокарбоновых кислот

Формула кислоты	Тривиальное название	Систематическое название	Название аниона (в солях кислоты)	Формула ацильной группы	Название ацильной группы
нс≼он	Муравьиная кислота	Метановая кислота	Формиат	HC ^O CH ₃ C ^O	Формил
CH3C ≤OH	Уксусная кислота	Этановая кислота	Ацетат	CH ₃ C€ ^O	Ацетил
$\text{CH}_3\text{CH}_2\text{C} \gtrless_{\text{OH}}^{\text{O}}$	Пропионовая кислота	Пропановая кислота	Пропионат	сн₃сн₂с<О	Пропионил
CH ₃ CH ₂ CH ₂ C≷OH	н-Масляная кислота	Бутановая кислота	Бутират	CH ₃ CH ₂ CH ₂ C≷ ^O	Бутирил
$_{\text{CH}_3}$ — $_{\text{CH}_3}$	Изомасляная кислота	2-Метилпропановая кислота	Изобутират	CH ₃ —CH—C ^O CH ₃	Изобутирил
C ₁₅ H ₃₁ COOH	Пальмитиновая кислота	Гексадекановая кислота	Пальмитат	$C_{15}H_{31}C \lesssim^{O}$ $C_{17}H_{35}C \lesssim^{O}$	Пальмитил
$\mathrm{C}_{17}\mathrm{H}_{35}\mathrm{COOH}$	Стеариновая кислота	Октадекановая кислота	Стеврат	$C_{17}H_{85}C \lesssim^{O}$	Стеарил
© OH C OH	Бензойная кислота	Бензоилкарбоновая кислота	Бензоат	Ç₹°	Бензоил

Например, при участии уксусной кислоты образуется ацетилконфермент A (ацетил-КоA)



ИЛИ

CH₃C
$$O$$
+ H-SKoA
 \rightarrow CH₃C
 \sim SKoA
+ H₂O
- AM Φ
- $\Phi\Phi$

Ацетил-КоА, источники, пути использования

Реакции с участием радикалов монокарбоновых кислот

Галогенирование насыщенных алифатических кислот (реакция Гелля—Фольгарда—Зелинского)

В живом мире наибольшее значение имеют:

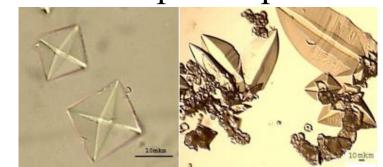
Формула	Тривиальное название кислоты	Название солей	Название ацильного остатка
$HOOC-COOH$ $HOOC-CH_2-COOH$ $HOOC-(CH_2)_2-COOH$ $HOOC-(CH_2)_3-COOH$	Щавелевая	Оксалаты	Оксалил
	Малоновая	Малонаты	Малонил
	Янтарная	Сукцинаты	Сукцинил
	Глутаровая	Глутараты	Глутарил

Диссоциируют ступенчато.

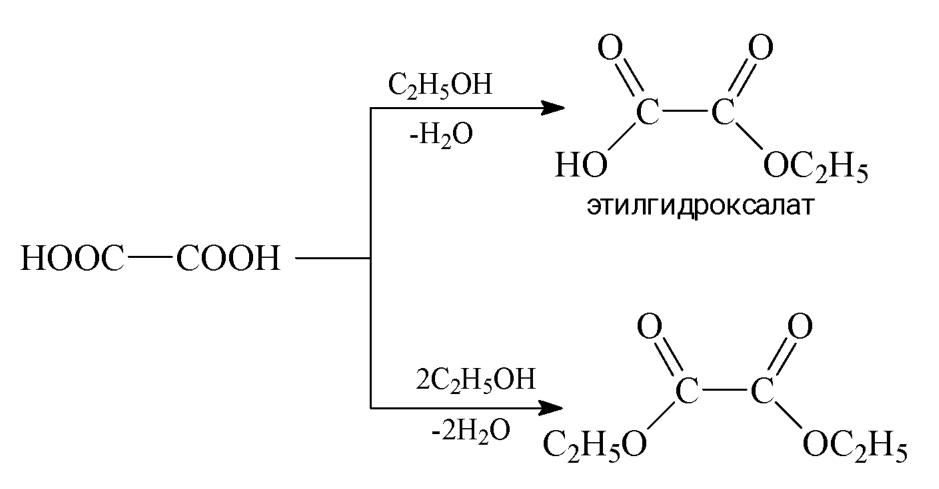
Кислотные свойства значительно выше, чем монокарбоновых, из-за электроноакцепторного влияния второй –СООН группы.

Дикарбоновые кислоты обладают **неспецифическими свойствами**, реакции могут протекать с участием одной или двух функциональных групп.

1. Дают два ряда солей:

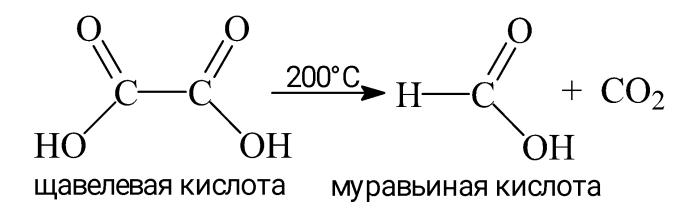

$$HOOC-COOH + NaOH \longrightarrow HOOC-COONa + H_2O$$

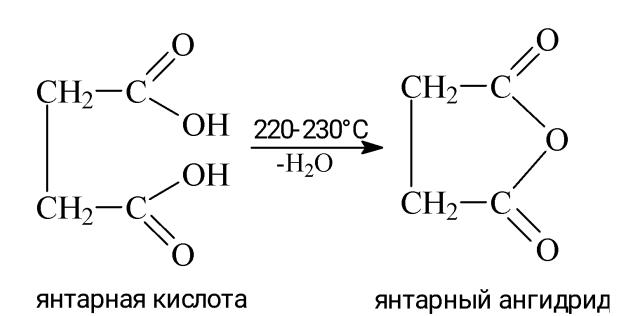
гидроксалат натрия (кислая соль)


$$HOOC$$
— $COOH + 2NaOH$ → $NaOOC$ — $COONa + 2H_2O$ оксалат натрия (средняя соль)

Кальциевые соли щавелевой кислоты малорастворимы-

они являются причиной образования оксалатных камней в почках и мочевом пузыре.

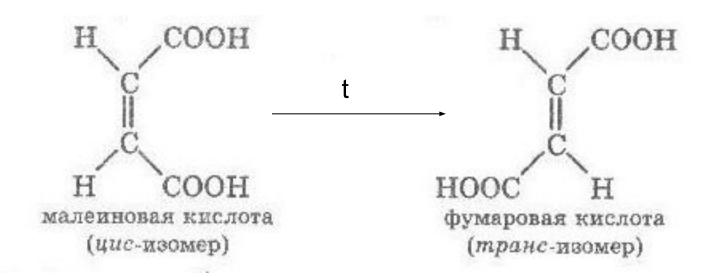

2. Образуют функциональные производные – полные и неполные эфиры (амиды):


диэтилгидроксалат

Специфические свойства

1. Первые два гомолога дикарбоновых кислот легко декарбоксилируются – отщепляют СО₂

2. Янтарная и глутаровая кислоты с более длинной цепью изгибаются и при нагревании не декарбоксилируются, а происходит внутримолекулярное ацилирование, с образованием циклических ангидридов.

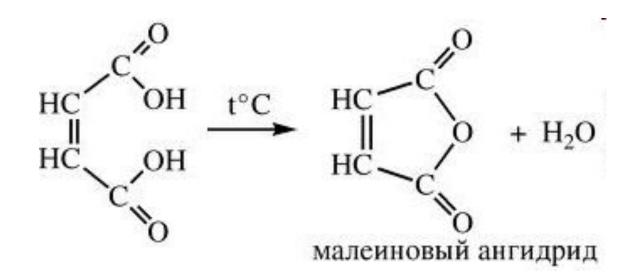


3. Дикарбоновые кислоты являются бидентатными лигандами и легко образуют прочные хелатные комплексы:

$$2HOOC-COOH + CuCl_2 + 4NaOH \longrightarrow \\ Na_2 \begin{bmatrix} O = C - O & O - C = O \\ O = C - O & O - C = O \end{bmatrix} + 2NaCl + 4H_2O$$

Непредельные дикарбоновые кислоты

Простейшими с одной двойной связью, являются малеиновая и фумаровая кислоты:



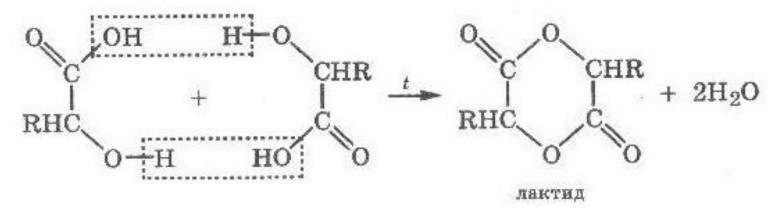
Малеиновая к-та менее устойчива, при нагревании и действии радикалобразующих веществ (иода, оксида азота, азотистой к-ты) превращается в фумаровую.

По химическим свойствам отличаются от предельных способностью присоединять галогены, галогенводороды, водород и т.д.

$$\begin{array}{cccc} \text{CH-COOH} & + \text{H}_2 & \text{CH}_2\text{-COOH} \\ \text{CH-COOH} & & \text{[Nii]} & \text{CH}_2\text{-COOH} \end{array}$$

Только малеиновая кислота способна давать циклический ангидрид (вследствие близкого расположения -СООН).

ГИДРОКСИКАРБОНОВЫЕ КИСЛОТЫ

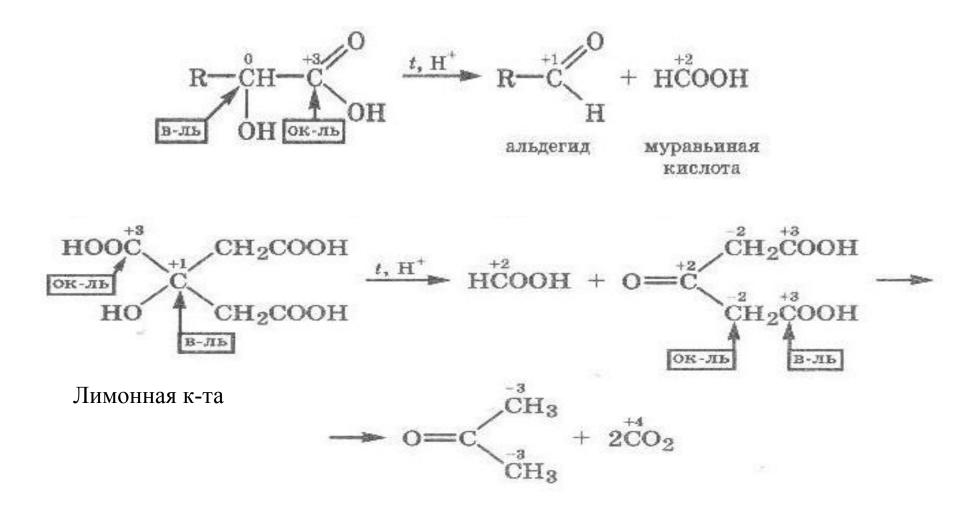

Соединения, молекулы которых содержат и спиртовые и карбоксильные группы.

Наиболее значимыми являются:

Формула	Тривиальное название кислоты	Название солей
сн ₃ —сн—соон	Молочная	Лактаты
ноос—сн ₂ —ё́н—соон он	Яблочная	Малаты
ноос-сн-сн-соон	Винная	Тартраты
СООН НООС-СН ₂ —С-СН ₂ —СООН ОН	Лимонная	Цитраты
$^{\gamma}_{\text{CH}_3}$ — $^{\beta}_{\text{CH}_2}$ — $^{\alpha}_{\text{CHCOOH}}$ $^{\gamma}_{\text{CH}_3}$ — $^{\beta}_{\text{CH}}$ — $^{\alpha}_{\text{CH}}$ $^{\alpha}_{$	OH	-CH ₂ CH ₂ COOH

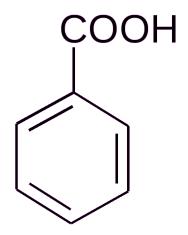
Специфические свойства

1. α-Гидроксикислоты дегидратируются межмолекулярно, с образованием циклических сложных эфиров (лактидов)


<u>β-Гидроксикислоты</u> дегидратируются **внутримолекулярно**, с образованием *непредельных кислот*.

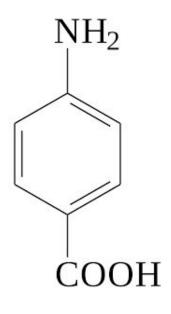
R—CH—CH—COOH
$$\stackrel{t}{\longrightarrow}$$
 R—CH—CH—COOH + H₂O
OH H

<u>γ и δ-гидроксикислоты</u> из-за близости –ОН и СООН – групп легко дегидратируются с образованием циклических внутренних сложных эфиров - **лактонов**


$$H_2C$$
 CH_2 CH_2

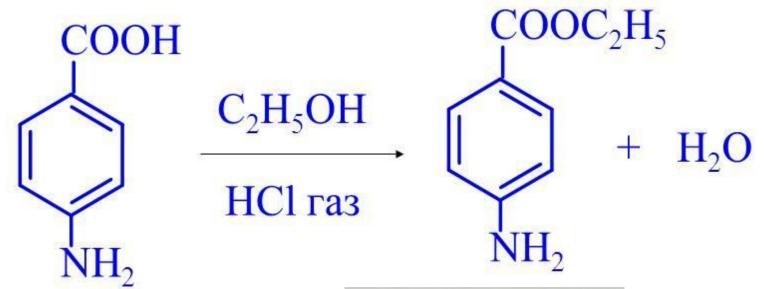
2. Внутримолекулярная Ox/Red дисмутация αгидроксикислот приводит к образованию муравьиной к-ты и альдегида или кетона:

АРОМАТИЧЕСКИЕ и ГЕТЕРОАРОМАТИЧЕСКИЕ карбоновые кислоты


Бензойная кислота

Применяют при кожных заболеваниях, как наружное антисептическое (противомикробное) и фунгицидное (противогрибковое) средства, а её натриевую соль — как отхаркивающее средство.

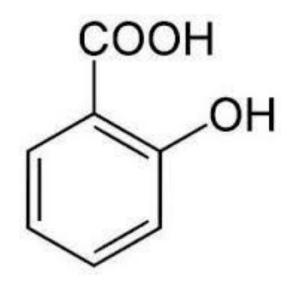
Обезвреживание бензойной кислоты


По скорости образования и выделения гиппуровой кислоты с мочой после приема бензойной кислоты судят о функции печени и ее роли в обезвреживании токсичных продуктов.

п-аминобензойная кислота (витамин В₁₀)

- участвует: в усвоении белка, в выработке красных кровяных телец;
- активизирует: кишечную микрофлору, синтез интерферона;
- повышает эффективность витамина С;
- препятствует образованию тромбов;
- антиоксидант и др.

Местноанестезирующие средства:

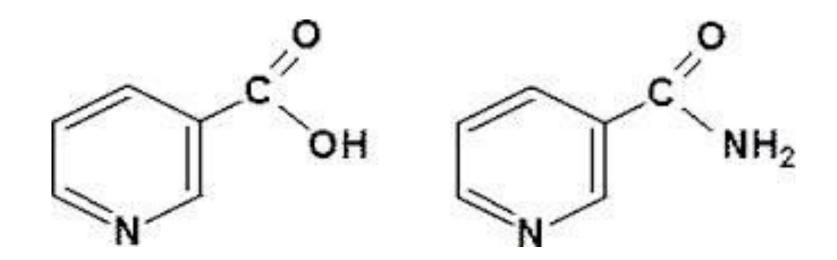


ФЕНОКИСЛОТЫ

Сильные кислоты. Проявляют свойства фенолов и кислот.

Обладает более кислотными свойства, чем ее мета- и параизомеры.

о-гидроксибензойная кислота (салициловая кислота)


Салициловая кислота оказывает жаропонижающее, антигрибковое и болеутоляющее действие.

Некоторые производные салициловой кислоты как лекарственные средства

Написать самостоятельно реакции их получения

- Препараты (кроме салола) оказывают анальгетическое, жаропонижающее и противовоспалительное действие.
- Салол дезинфицирующее средство при кишечных заболеваниях.
- В кислой среде не гидролизуется, используют как материал для защитных оболочек лекарственных средств.

Никотиновая кислота (витамин PP, витамин B3)

Никотинамид

В организме никотиновая кислота превращается в никотинамид, который связывается с коферментами НАД и НАДФ, переносящими водород, участвует в метаболизме белков, жиров, аминокислот, пуринов, тканевом дыхании.

Формула	Название кислоты	Название солей	Биологическая роль кислоты
HOOC−C ^O H	Глиок- силовая	Глиок- силаты	Это единственная α-альде- гидокислота. Встречается в недозрелых фруктах
CH ₃ -C-COOH	Пирови- ноград- ная	Пирува- ты	Важнейший промежуточ- ный метаболит в живых системах
СН3—С—СН2СООН О	Ацето- уксус- ная	Ацето- ацетаты	Образуется в организме при β-окислении жирных кислот; накапливается при сахарном диабете
HOOC-C-CH ₂ COOH		Оксало- ацетаты	Метаболит, участвующий в цикле Кребса
HOOC-C-CH ₂ CH ₂ COOH	α-Оксо- глутаро- вая	α-Оксо- глутара- ты	Метаболит, участвующий в цикле Кребса и в син- тезе глутаминовой и у- аминомасляной кислот

Являются естественными продуктами обмена веществ. Обладают свойствами, характерными для кислот, альдегидов и кетонов.

Данные кислоты в организме образуются при окислении соответствующих гидроксикарбоновых кислот с помощью дегидрогеназ с окисленной формой конфермента НАД+:

Внутримолекулярная дисмутация

В отличие от α-оксокарбоновых к-т, декарбоксилирование β-оксокарбоновых к-т протекает легче (даже при комнатной температуре).

ОКСОКИСЛОТЫ. РЕАКЦИОННАЯ СПОСОБНОСТЬ.

Пировиноградная кислота является одним из промежуточных продуктов молочнокислого и спиртового брожения углеводов, ее соли называют пируватами.

ПВК легко декарбоксилируется при нагревании с разбавленной H2SO4

$$CH_3-C-COOH$$
 t°, H_2SO_4 CH_3-C H пировиноградная кислота t°, H_2SO_4 ацетальдегид

In vivo эта реакция протекает в присутствии фермента декарбоксилазы и соответствующего кофермента. Образующийся "активный ацетальдегид" далее окисляется в в ацетилкофермент А.

$$CH_3 - C - COOH$$
 декарбоксилаза - CO_2 - CO_2 - CO_2 - $CH_3 - C$ - CO_2 - $CH_3 - C$ - CO_3 - $CH_3 - C$ - CO_4 ацетилкофермент А

Реакции восстановления

Гидрирование

$$CH_3-C-COOH + HAД(H) + H^+ \xrightarrow{\text{гидрогеназа}} CH_3-CH-COOH + HАД^+ O_2$$
 ОН молочная кислота

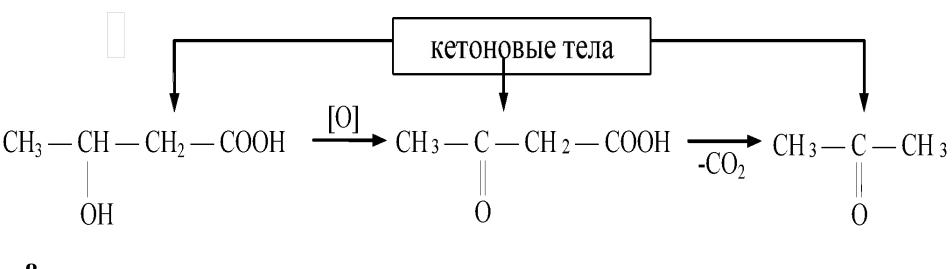
Трансаминирование

Основной метод биосинтеза α-аминокислот из α-оксокислот.

α-оксокислота

α-аминокислота

Реакции комплексообразования


Оксокарбоновые к-ты являются активными ди- и полидентатными лигандами и образуют устойчивые хелаты с ионами- комплексообразователями:

$$Cu^{2+} + 2HC$$
 $C - OH$
 $Cu^{2+} + 2HC$
 $C - O$
 $Cu^{2+} + 2H_2O$
 $Cu^{2+} + 2H_2O$
 $Cu^{2+} + 2H_2O$
 $Cu^{2+} + 2H_2O$

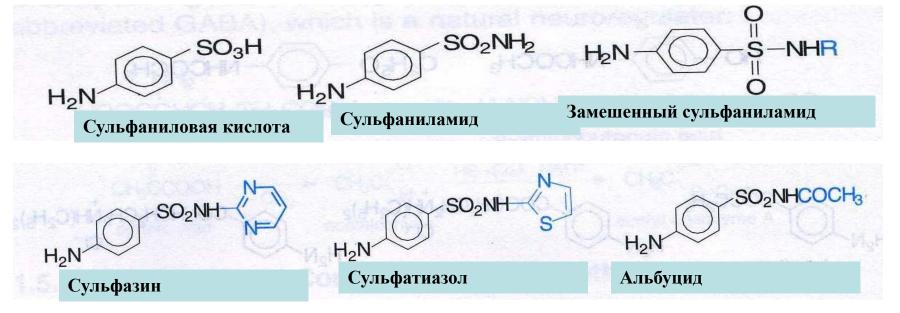
На данных реакциях основано применение оксокарбоновых кислот для приготовления лекарственных препаратов для вывода ионов металлов-токсикантов из организма.

«КЕТОНОВЫЕ» ТЕЛА.

«Кетоновые» или «ацетоновые» образуются in vivo в процессе метаболизма высших жирных кислот. Процесс образования кетоновых тел активируется при сахарном диабете и голодании.

β-гидроксимасляная кислота

ацетоуксусная кислота ацетон


Лекарственные средства на основе гетерофункциональных соединений Производные салициловой кислоты

Производные сульфаниловой кислоты

- это КК с числом углеродных атомов больше 10.

насыщенные

мононенасыщенные

полиненасыщенные

Пальмитиновая к-та

C₁₅H₃₁COOH

Стеариновая к-та

 $C_{17}H_{35}COOH$

ТВЕРДЫЕ

Олеиновая к-та

 $C_{17}H_{33}COOH$

Линолевая к-та

C₁₇H₃₁COOH

Линоленовая к-та


C₁₇H₂₉COOH

Арахидоновая к-та

C₁₉H₃₁COOH

ЖИДКИЕ

Изомерия ненасыщенных жирных

Высший карбоновые кислоты проявляют свойства низших карбоновых кислот.

Ненасыщенные легко вступают в реакции по кратным связям.

Ненасыщенные ВКК значительно легче окисляются в организме и могут ограничивать в нем свободнорадикальное окисление.

При полном гидрировании превращаются в предельные:

$$10$$
 9 $CH_3-(CH_2)_7-CH=CH-(CH_2)_7-COOH+H_2 \rightarrow O$ Олеиновая кислота $\rightarrow CH_3-(CH_2)_{16}-COOH$ Стеариновая кислота