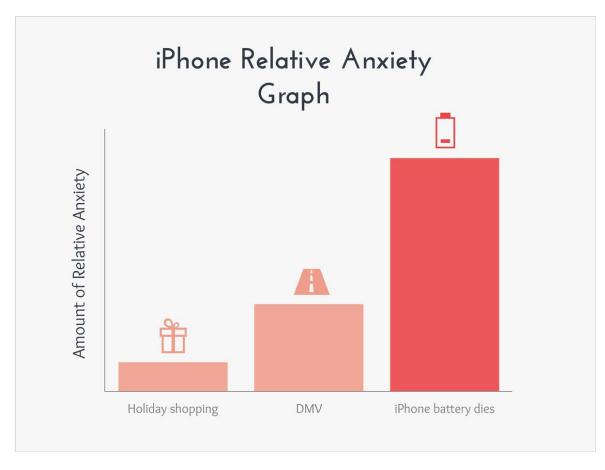
Descriptive Statistics Graphing Techniques



Points and grades from examination

No.	Points	Grade	No.	Points	Grade	No.	Points	Grade
1	15	1	12	12	3	23	15	2
2	17	1	13	16	2	24	9	4
3	19	1	14	13	1	25	17	1
4	10	2	15	7	3	26	16	1
5	2	2	16	15	1	27	13	1
6	14	2	17	20	2	28	6	2
7	5	4	18	16	2	29	16	3
8	17	2	19	14	3	30	18	1
9	11	1	20	3	2			
10	16	2	21	15	1			
11	10	3	22	12	1			

Sample size n=30

- Data sorting → Frequency table
 - both for quantitative and qualitative data

Exam grade

	Exam grade					
	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
1	12	40,0	12,0	40,0		
2	11	36,7	23,0	76,7		
3	5	16,7	28,0	93,3		
4	2	6,7	30,0	100,0		
Total	30	100,0				

Notation

- Frequency ... n_i
- Relative
 frequency ... f_i

$$f_i = \frac{n_i}{n}$$

Cumulative
 Frequency ... N_i

$$N_i = \sum_{j \le i} n_j$$

Cumulative

$$\begin{array}{c} \text{Percent} & F \\ F_i & = \sum_{j \leq i} f_j \end{array}$$

Points from class test

	Points from class test					
Points	Frequency	Percent	Points	Frequency	Percent	
2	1	3,33	13	2	6,67	
3	1	3,33	14	2	6,67	
5	1	3,33	15	4	13,33	
6	1	3,33	16	5	16,67	
7	1	3,33	17	3	10,00	
9	1	3,33	18	1	3,33	
10	2	6,67	19	1	3,33	
11	1	3,33	20	1	3,33	
12	2	6,67	Total	30	100,00	

Quantitative variables

How to select the intervals

- Number of intervals → in order to describe the characteristics of the data
- Simple reccommendation
 - intervals of the same width

$$k = \sqrt{n}$$

k ... number of intervals

n ... sample size

...then

$$h = \frac{R}{k}$$

h ... width of interval

R ... Range= x_{max} - x_{min}

k ... number of intervals

Our example:

$$n = 30$$

$$R = 20 - 2 = 18$$

$$k = \sqrt{30} = 5,48 \cong 6$$

$$h = \frac{18}{6} = 3$$

Points from class test

Points from class test

Interval	Frequency	Percent	Cumulative Frequency	Cumulative Percent
5 and less	3	10,0	3	10,0
6-9	3	10,0	6	20,0
10-13	7	23,3	13	43,3
14-17	14	46,7	27	90,0
18 and more	3	10,0	30	100,0
Total	30	100,0		

Measures of Central Tendency

- Measures that represent
 with a proper value the tendency of
 most data to gather around this
 value
- Number of different measures of central tendency
 - o the arithmetic mean
 - o the median
 - o the mode

The arithmetic mean

Notation

arithmetic mean \overline{X}

 the sum of the values of a variable divided by the number of scores (by the sample size)

$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Properties of the arithmetic mean

- it is expressed in the same unit of measure as the observed variable
- it is the point in a distribution of measurements about which the sum of deviations are equal to zero

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0$$

Note: deviation explains the distance and direction from a reference point – here the arithmetic mean, it is positive when the value is greater than the mean and negative when lower than the mean

3. the mean is **very sensitive** to extreme values

Personal income (thousands CZK)

No.	Xi	$x_i - \overline{x}$	No.	Xi	$x_i - \overline{x}$
1	13,2	-12,62	9	16,4	-9,42
2	13,5	-12,32	10	17,2	-8,62
3	14,0	-11,82	11	19,0	-6,82
4	14,5	-11,32	12	25,8	-0,02
5	14,5	-11,32	13	27,0	1,18
6	15,2	-10,62	14	35,0	9,18
7	15,6	-10,22	15	35,5	9,68
8	16,2	-9,62	16	120,5	94,68
			Σ	413,1	0,00

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0$$

$$\overline{x} = \frac{13,2+...+120,5}{16} = \frac{413,1}{16} = 25,82$$
 thousands CZK

- □ 12 of 16 values are below the arithmetic mean, because of the highest value x_{16} =120,5 (directors income)
- personal income is a commonly studied variable in which other measure of central tendency is preferred

Other measures of central tendency

\circ The median.... \widetilde{X}

The value above and below which one-half of the frequencies fall

- n...odd number
 - \rightarrow median case number=(n+1)/2
- n…even number
 - the arithmetic mean of the two middle values

Properties: Insensitive to extreme values

Other measures of central tendency

\circ The mode.... \hat{x}

The value that occurs with greatest frequency

- for qualitative (nominal and ordinal) and quantitative discrete data
- from a statistical perspective it is also the most probable value

Personal income (thousands CZK)

n=16... even number

No.	x _i	No.	x _i
1	13,2	9	16,4
2	13,5	10	17,2
3	14,0	11	19,0
4	14,5	12	25,8
5	14,5	13	27,0
6	15,2	14	35,0
7	15,6	15	35,5
8	16,2	16	120,5

the median

the mode

Personal income (thousands CZK)

n	1 — T	6	Δι/Δι	num	har
		. U	CVCI	ıııuıı	UCI

No.	Xi	No.	x _i
1	13,2	9	16,4
2	13,5	10	17,2
3	14,0	11	19,0
4	14,5	12	25,8
5	14,5	13	27,0
6	15,2	14	35,0
7	15,6	15	35,5
8	16,2	16	120,5

the median

the mode

$$\widetilde{x} = \frac{x_8 + x_9}{2} = \frac{16,2 + 16,4}{2} = 16,3$$

$$\hat{x} = 14,5$$

Use of mean, median and mode

The arithmetic mean

- member of mathematical system in advanced statistical analysis
- preferred measure of central tendency if the distribution is not skewed

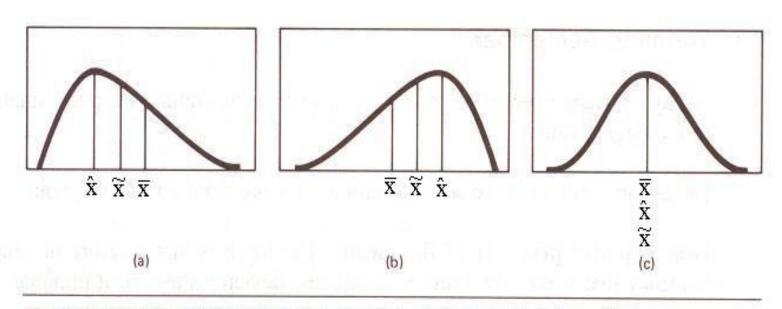
The median

when the distribution is skewed

The mode

whenever a quick, rough estimate of central tendency is desired

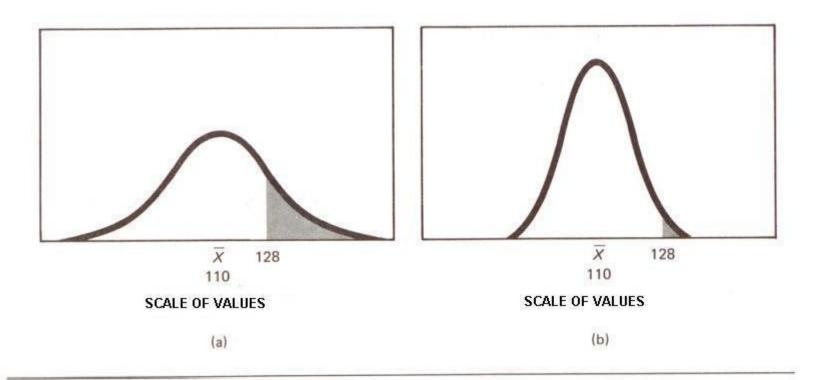
The mean, median, mode and skewness



The relationship among the mean, median, and mode in (a) positively skewed, (b) negatively skewed, and (c) symmetrical distributions.

Measures of Dispersion

- to describe the spread of the data, its variation around a central value
- we want to express the distance along the scale of values



Two frequency curves with identical means but differing in dispersion or variability.

The Range....R

 it is the distance between the largest and the smallest value

$$R = x_{max} - x_{min}$$

- it does not explain the variability inside the range!
- very simple and straightforward measure of dispersion

The Variance...s²

- it is an average squared deviation of each value from the mean
 - is the sum of the squared deviations from the mean divided by n
- when computing the variation based on sample we correct the calculation

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Working formulas

For easier computation

Formula 1

$$\mathbf{s^2} = \frac{\sum_{i=1}^{n} \mathbf{x_i}^2 - \overline{\mathbf{x}} \sum_{i=1}^{n} \mathbf{x_i}}{\mathbf{n-1}}$$

Formula 2

$$\mathbf{s^2} = \frac{\sum_{i=1}^{n} \mathbf{x_i}^2 - n\overline{\mathbf{x}}^2}{\mathbf{n-1}}$$

the variance explains both

- the variability of the values around the arithmetic mean
- the variability among the values

difficult interpretation

(it is expressed in the squares of the unit of measure)

The Standard Deviation...s

it is the square root of variance

 when computing the variation based on sample

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Properties of the standard deviation

- it is expressed in the same unit of measure as the observed variable
- the size of the standard deviation is related to the variability in the values
 - the more homogeneous values, the smaller SD
 - the heterogeneous values, the larger SD
- member of mathematical system in advanced statistical analysis (like the arthmetic mean)

Two data sets with the same arithmetic mean and different SD

$\mathbf{x}_{\mathbf{i}}$	$(\mathbf{x}_{i} - \overline{\mathbf{x}})$	$(x_i - \overline{x})^2$
4	0	0
4	0	0
4	0	0
4	0	0
4	0	0

$$\sum_{i=1}^{n} x_{i} = 20 \qquad \sum_{i=1}^{n} (x_{i} - \overline{x}) = 0 \qquad \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = 0$$

$$\overline{x} = 4$$
 $n = 5$
$$s = \sqrt{\frac{0}{5}} = 0$$

Array B

$\mathbf{x_i}$	$(x_i - \overline{x})$	$(\mathbf{x}_i - \overline{\mathbf{x}})^2$		
2	-2	4		
2	-2	4		
3	-1	1		
4	0	0		
9	+5	25		

$$\sum_{i=1}^{n} X_{i} = 20 \qquad \sum_{i=1}^{n} (X_{i} - \overline{X}) = 0 \qquad \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = 0 \qquad \sum_{i=1}^{n} X_{i} = 20 \qquad \sum_{i=1}^{n} (X_{i} - \overline{X}) = 0 \qquad \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = 34$$

$$\overline{x} = 4$$
 $n = 5$ $s = \sqrt{\frac{34}{5}} = 2,6$

Example – Personal income (thousands CZK)

No.	x _i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
1	13,2	-12,62	159,2644
2	13,5	-12,32	151,7824
	•••	•••	•••
16	120,5	94,68	8 964,3024
		Σ	10 370,04

$$s^2 = \frac{10370,04}{16-1} = 691,3363$$

$$s = \sqrt{s^2} = \sqrt{691,3363} = 26,2938$$
 thousands CZK

Coefficient of Variation...V

 the ratio of the standard deviation to the mean

$$V = \frac{s}{\overline{x}}$$

 often reported as a percentage (%) by multiplying by 100

- it is a relative measure of dispersion
- used when comparing two data sets with different units or widely different means
- values higher than 50% indicate large variability

Example – Personal income (thousands CZK)

No.	x _i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
1	13,2	-12,62	-159,2644
2	13,5	-12,32	-151,7824
	•••	•••	•••
16	120,5	94,68	8 964,3024
		Σ	10 370,04

$$s = 26,2938$$
 $\overline{x} = 25,82$

$$V = \frac{s}{\overline{x}} = \frac{26,2938}{25,82} = 1,01835$$

$$V = 1,01835 * 100 = 101,835\%$$

Percentiles (Centiles)

- value below which a certain percent of observations fall
- scale of percentile ranks is comprised of 100 units
- insensitive to extreme values

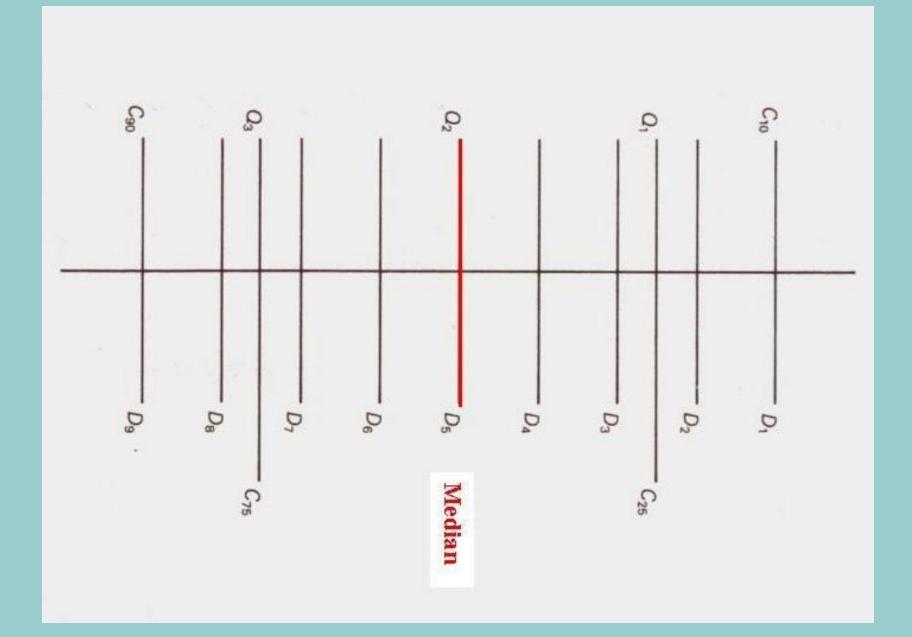
Deciles

- divides a distribution into 10 equal parts
- there are 9 deciles
- \circ D₁ 1st decile
 - 10 percent of values fall below it
- O D_9 9th decile
 - 90 percent of values fall below it

Quartiles

divides a distribution into 4 equal parts

- Q₁ 25 percent of values fall below it
 - 25th centile
- Q₂ 50 percent of values fall below it
 - 50th centile
- Q_3 75 percent fall below it
 - 75th centile



Graphing Techniques

Constructing graphs – Bar graph

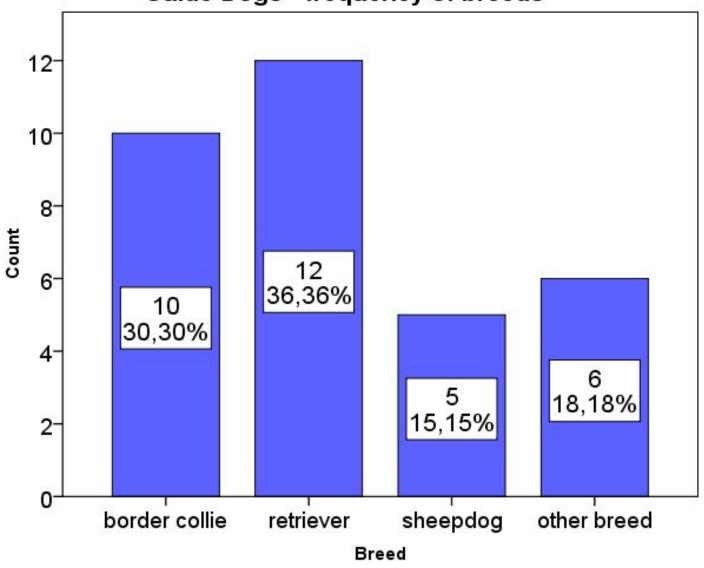
- x axis: labels of categories
- y axis: frequency (relative frequency)

The height of each rectangle is the category's frequency or relative frequency.

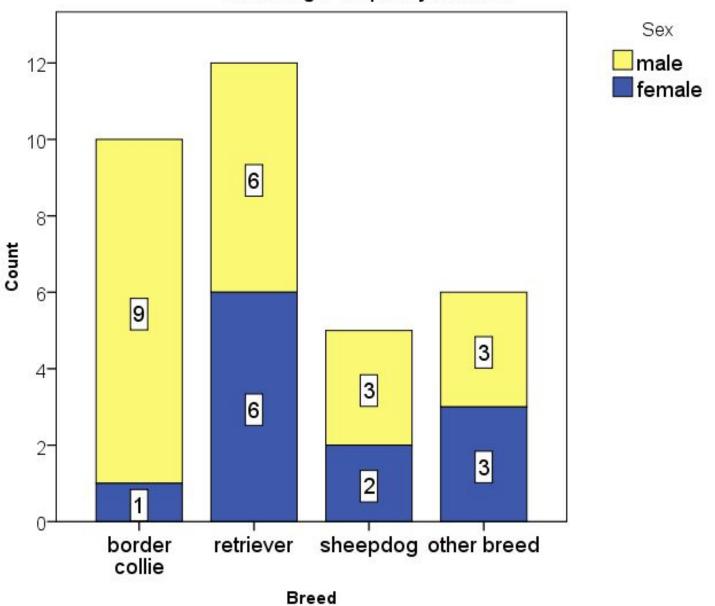
Arranging the graph

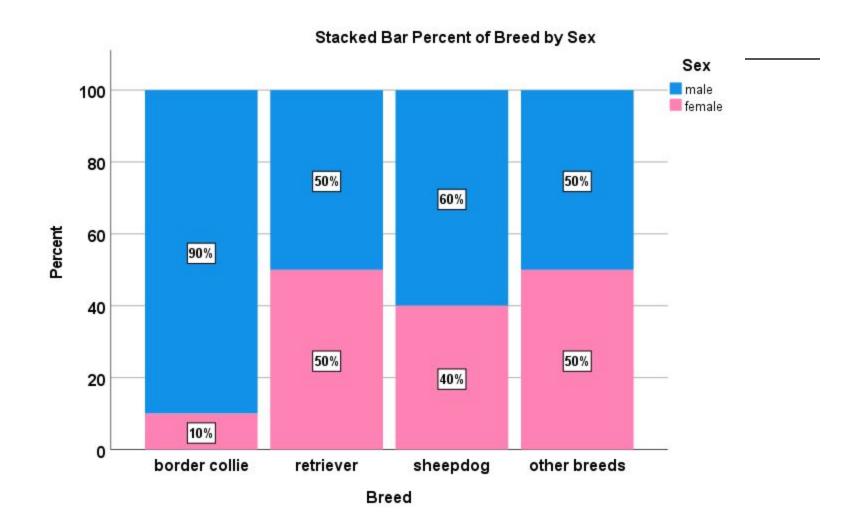
- nominal variables we can arrange the categories in any order:alphabetically, decreasing/increasing order of frequency
- ordinal variables the categories should be placed in their naturally occuring order

Guide Dogs - frequency of breeds



Guide Dogs - frequency of breeds

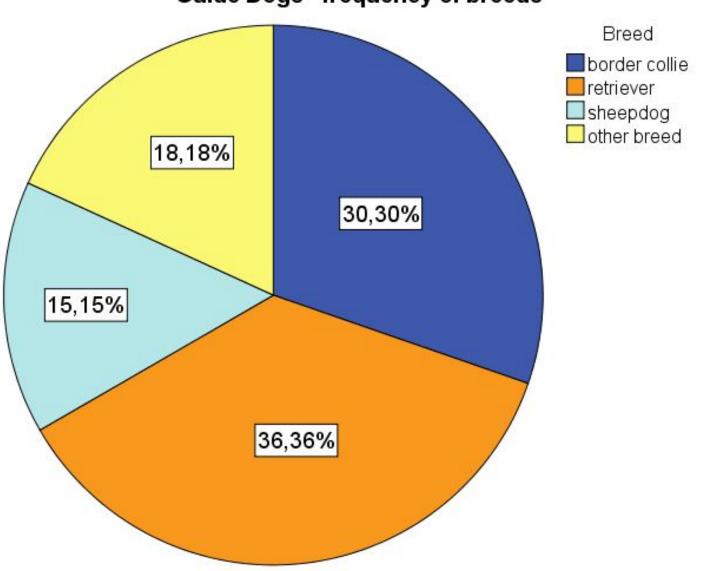




Constructing graphs – Pie graph

- Pie chart a circle divided into sectors
 - each sector represents a category of data
 - the area of each sector is proportional to the frequency of the category

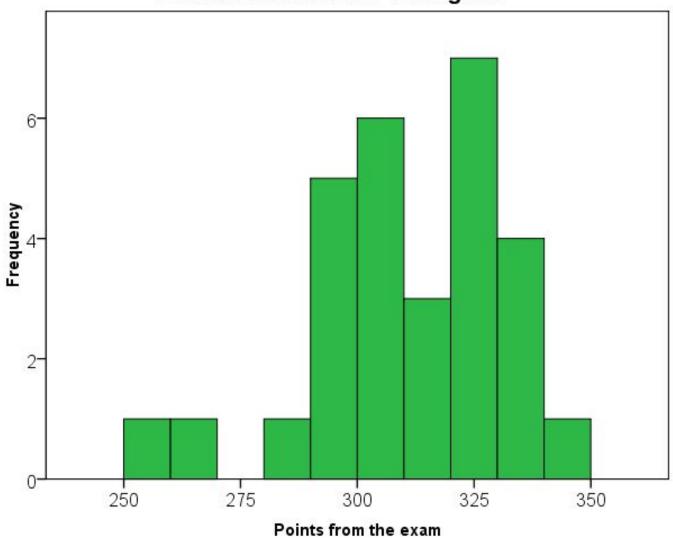
Guide Dogs - frequency of breeds



Constructing graphs – Histogram

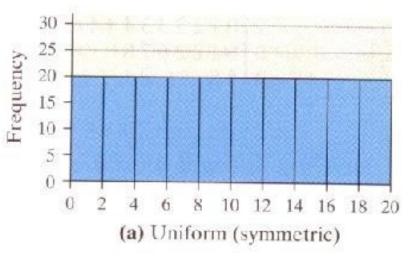
- bar graph for quantitative data
- values are grouped into intervals (classes)
- constructed by drawing rectangles for each class of data
- the height of each rectangle is the frequency of the class
- the width of each rectangle is the same

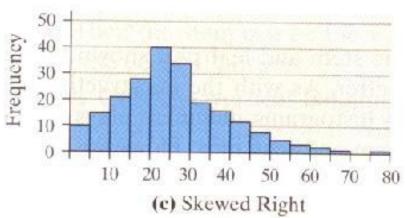
Points from the exam - histogram

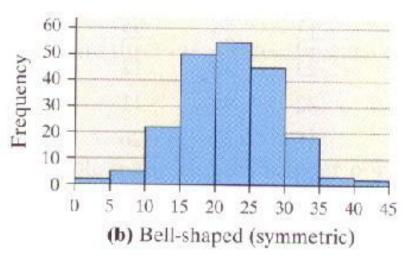


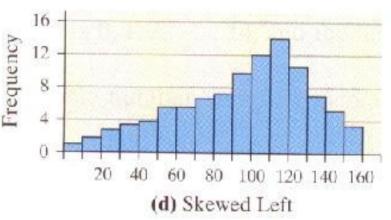
Histogram

Figure 15

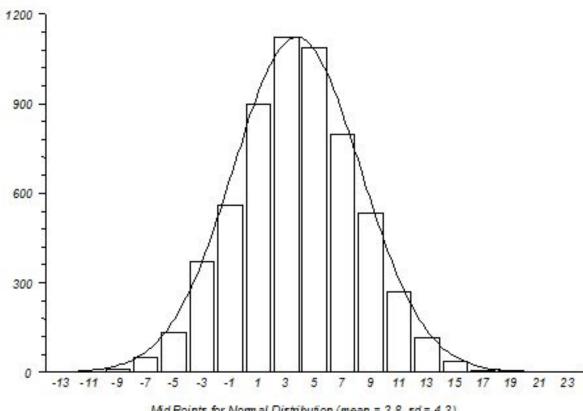








Histogram for Normal Distribution (mean = 3.8, sd = 4.3)

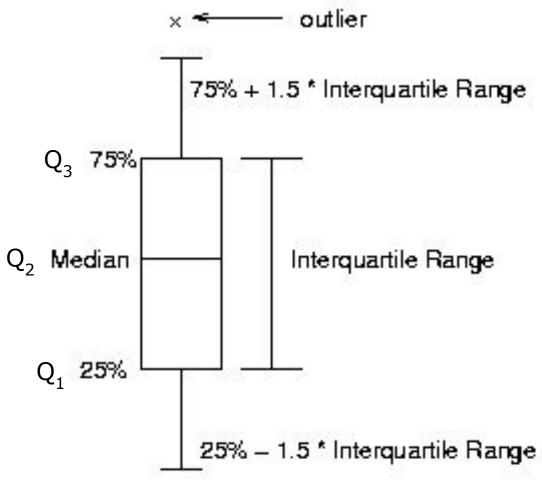


Mid Points for Normal Distribution (mean = 3.8, sd = 4.3)

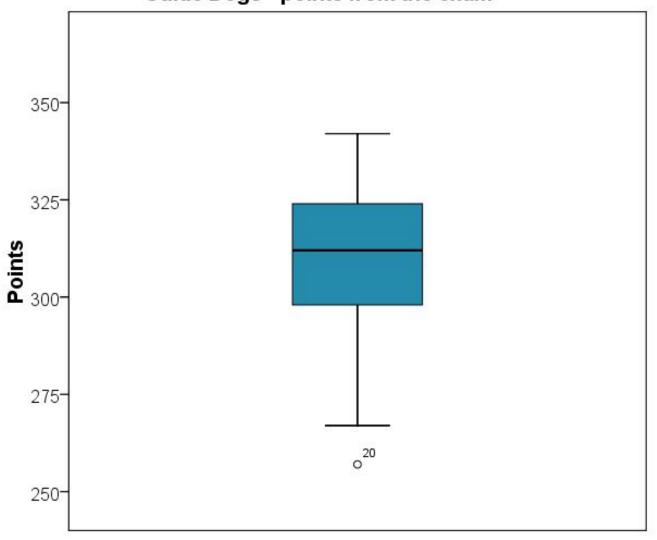
Constructing graphs – **Boxplot**

- box-and-whisker diagram
- five number summary

Boxplot



Guide Dogs - points from the exam



Guide Dogs - points from the exam

