8 класс

Геометрия

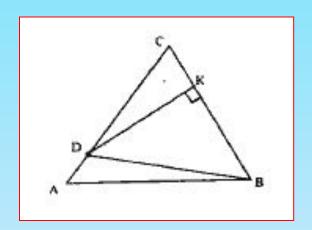
Домашнее задание

Серединный перпендикуляр к стороне BC треугольника ABC пересекает сторону AC в точке D. Найдите: а) AD и CD, если BD=5 см, AC=8,5 см; б) AC, если BD=11,4 см, AD=3,2 см.

Стороны угла A касаются окружности с центром O радиуса r. Найдите: а) OA, если r=5 см, $\angle A=60^\circ$; б) r, если OA=14 дм, $\angle A=90^\circ$.

Биссектрисы AA_1 и BB_1 треугольника ABC пересекаются в точке M. Найдите углы ACM и BCM, если: а) $\angle AMB = 136^\circ$; б) $\angle AMB = 111^\circ$.

Серединный перпендикуляр к стороне BC треугольника ABC пересекает сторону AC в точке D. Найдите: а) AD и CD, если BD=5 см, AC=8,5 см; б) AC, если BD=11,4 см, AD=3,2 см.



Дано; AABC; DK±BC, CK = KB; a) AD и CD = ? б) AC = ?

Решение:

a) $BD = 5c_{M}$, $AC = 8.5c_{M}$.

DK – серединный перпендикуляр к BC, следовательно, BD = DC (по св-ву), т.е. DC = 5см, тогда

AD = AC - DC = 8.5 - 5 = 3.5cm;

6) BD = 11,4см, AD = 3,2 см,

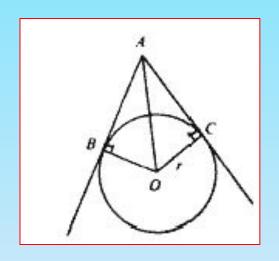
DK - серединный перпендикуляр к BC, следовательно,

DC = BD = 11.4cm;

 $AC = DC + AD = 3.2 \cdot 11.4 + 14.6cm$

Ответ: а) 5см; 3,5см; б) 11,4см и 14,6см.

Стороны угла A касаются окружности с центром O радиуса r. Найдите: а) OA, если r=5 см, $\angle A=60^\circ$; б) r, если OA=14 дм, $\angle A=90^\circ$.



Дано: AB, AC – касательные к Окр (О;r). Найти; а) ОА; б) r.

Решение:

- а) r = 5см, $\angle A = 60^{\circ}$ (усл.);
- 1) ОВ⊥АВ, ОС⊥АС, следовательно, АО является биссектрисой.
- B ΔACO:

$$\angle C = 90^{\circ}$$
, $\angle A = 30^{\circ}$, $AO = 2.5$, $OC = 5$ cm, $T.e.$

AO = 2ОС (из прямоуг. треугольника АОС),

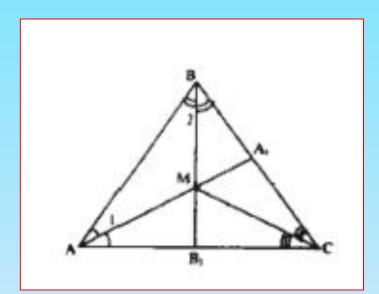
AO = 2.5 = 10cm;

б) AO – биссектриса, тогда в \triangle AOC: ∠A = 45°, ∠C = 90°,

$$\angle$$
O = 45°, r.e. AC = OC = r;

$$14^2 = 2r^2$$
; $r^2 = 98$ (т. Пифагора), $r = 7\sqrt{2}$.

Биссектрисы AA_1 и BB_1 треугольника ABC пересекаются в точке M. Найдите углы ACM и BCM, если: а) $\angle AMB = 136^\circ$; б) $\angle AMB = 111^\circ$.



Дано: ΔABC ; AA_1 ; BB_1 – биссектрисы: $AA_1 \cap BB_1 = M$. Найти: $\angle ACM$ и $\angle BCM$,

Решение:

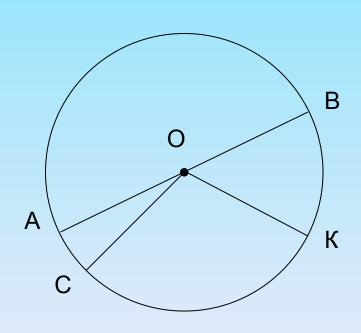
- a) ∠AMB = 136°
- М точка пересечения биссектрис AA₁ и BB₁, следовательно,
 СМ биссектриса ∠АСВ и ∠АСМ = ∠ВСМ;
- 2) $\triangle ABM$: $\angle A \cdot \angle B + \angle C = 180^{\circ}$, r.e.

$$\angle 1 + \angle 2 = 180^{\circ} - 136^{\circ} = 44^{\circ}$$
;

- ΔABC: ∠A + ∠B + ∠C = 180°;
- $\angle C = 180^{\circ} (\angle B + \angle A), 2 \cdot (\angle 1 + \angle 2) = 2 \cdot 144^{\circ} = 88^{\circ};$
- $\angle C = 180^{\circ} 88^{\circ} = 92^{\circ}$, r.e. $\angle BCM = \angle ACM = 46^{\circ}$;
- ∠AMB = 111°.
- Имеем: $\angle C = 180^{\circ} 2 \cdot (180^{\circ} 111^{\circ})) = 42^{\circ}$, т.е.
- $\angle ACM = \angle BCM = 21^{\circ}$.

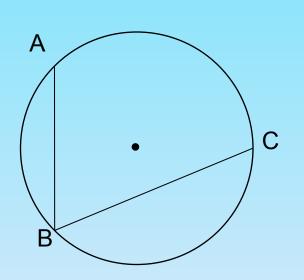
Ответ: а) 46°; 46°; б) 21°; 21°.

Центральный угол

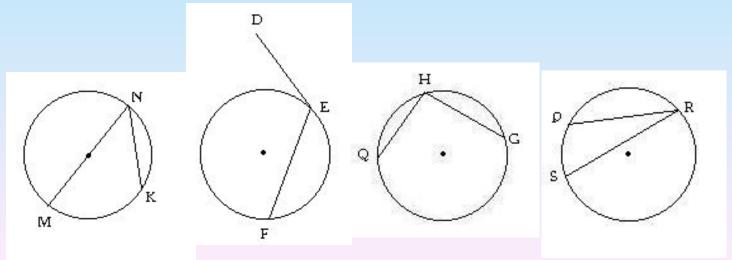


- Центральный угол угол с вершиной в центре окружности.
- Градусная мера центрального угла соответствует градусной мере дуги, на которую он опирается (если дуга меньше полуокружности).
- Найдите градусную меру угла AOB.

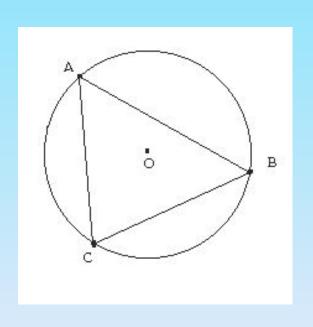
Вписанный угол.



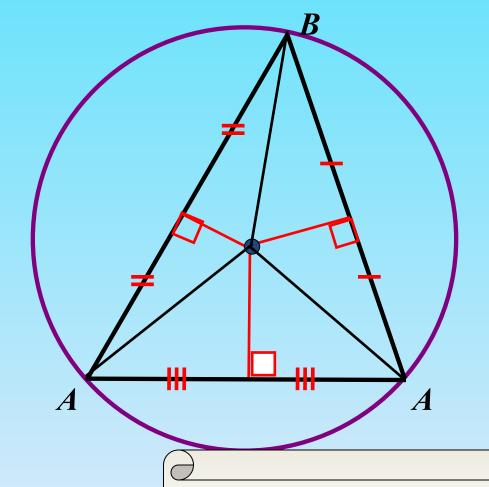
- Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным в окружность.
- Какие из углов являются вписанными в окружность?
- Вписанный угол равен половине соответствующего центрального угла



Описанная окружность. Треугольник, вписанный в окружность.



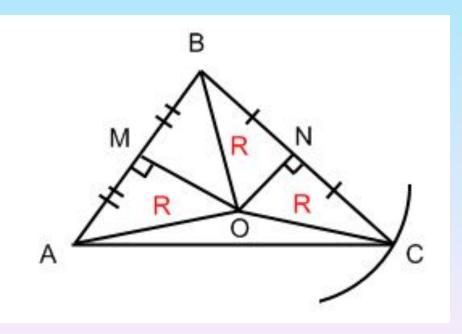
- Окружность называется описанной около треугольника, если она проходит через все его вершины. В этом случае треугольник называется вписанным в окружность.
- Стороны вписанного треугольника являются хордами описанной около него окружности.
- Где лежит центр окружности, описанной около треугольника?

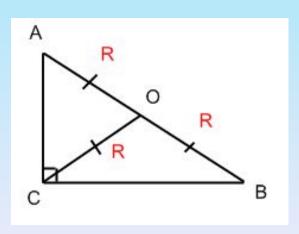


Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров треугольника.

Треугольник. Описанная окружность.

- 1) Центр описанной окружности точка пересечения серединных перпендикуляров к сторонам треугольника.
- 2) Центр описанной окружности равноудалён от всех вершин треугольника.
- 3) Центр окружности, описанной около прямоугольного треугольника, является серединой гипотенузы.



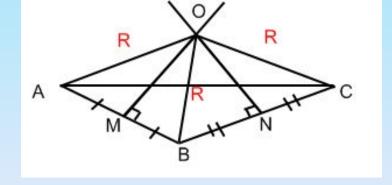


$$R = \frac{1}{2}AB$$

Треугольник. Описанная окружность

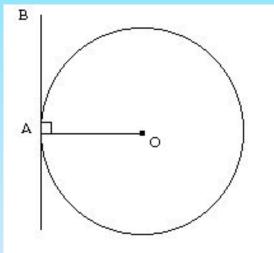
- 4) R радиус описанной окружности R=OA=OB=OC в любом треугольнике.
- 5) Центр окружности, описанной около тупоугольного треугольника, находится вне треугольника.

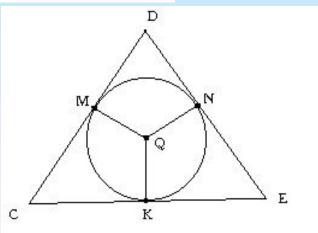
$$R = \frac{a}{\sqrt{3}}$$
 - для правильного треугольника



$$R = \frac{a \cdot b \cdot c}{4S} \qquad \frac{a}{\sin A} = 2R$$

Касательная к окружности

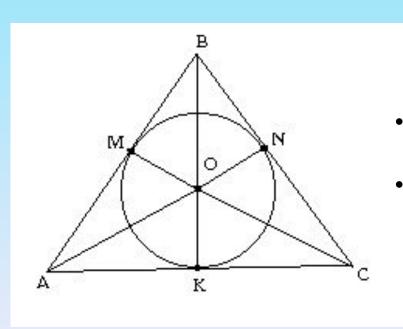




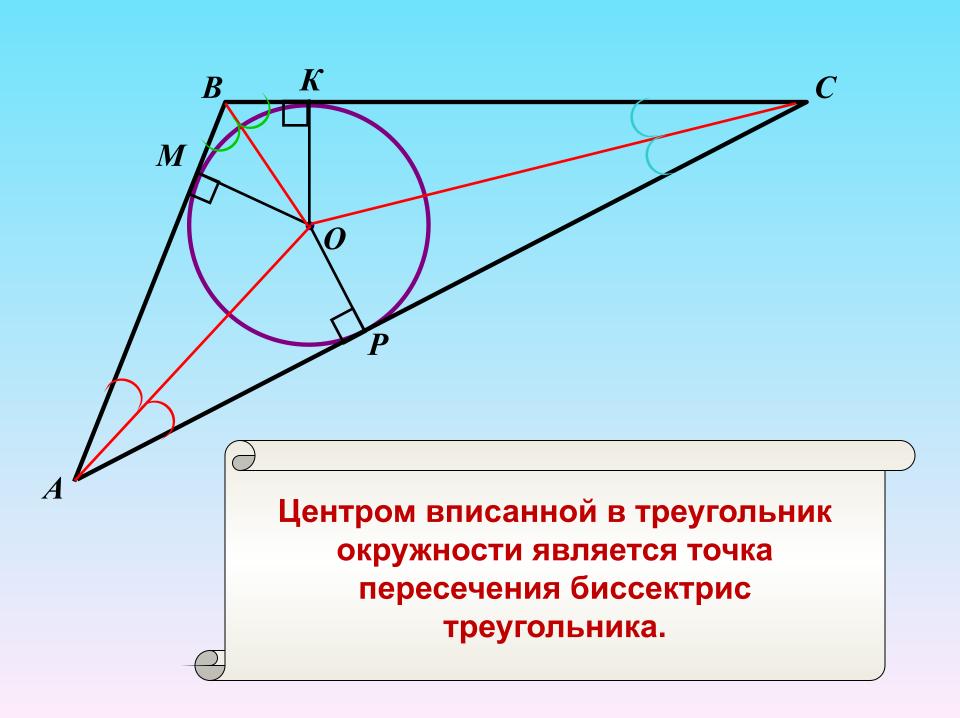
• Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности Общая точка окружности и касательной называется точкой касания.

• Что можно сказать о сторонах треугольника CDE по отношению к окружности?

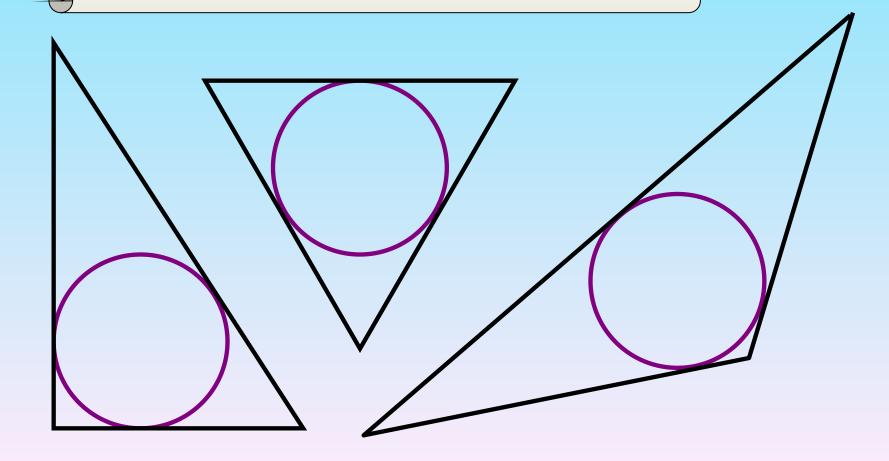
Окружность, вписанная в треугольник.



- Окружность называется вписанной в треугольник, если она касается всех его сторон. В этом случае треугольник называется описанным около окружности.
 - Где лежит центр окружности, вписанной в треугольник?
 - Треугольник ABC-описанный около окружности. Какие из треугольников AOM, MOB, BON, NOC, COK, KOA-равные?



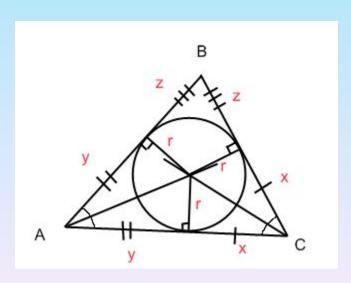
В любой треугольник можно вписать окружность.



Треугольник. Вписанная окружность.

- 1) Центр вписанной окружности в треугольник точка пересечения биссектрис.
- 2) Центр вписанной окружности равноудалён от сторон треугольника.

3) $_{r}=\frac{S}{p}$ р – полупериметр треугольника, r – радиус вписанной окружности В правильном треугольнике

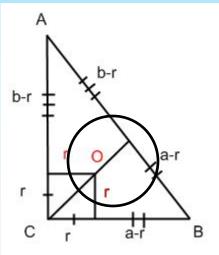


$$r = \frac{a\sqrt{3}}{6}$$

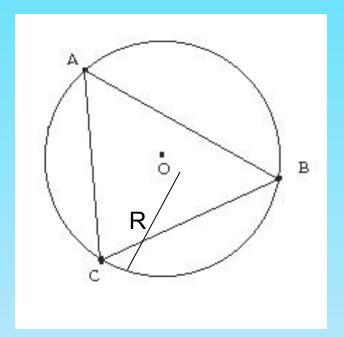
С – гипотенуза

$$C = p - r$$

р - полупериметр

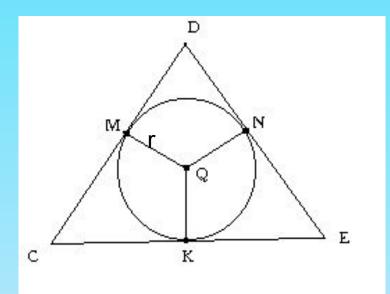


$$r = \frac{a+b-c}{2}$$



$$R = \frac{a \cdot b \cdot c}{4S}$$

$$\frac{a}{\sin A} = 2R$$



$$r = \frac{S}{p}$$

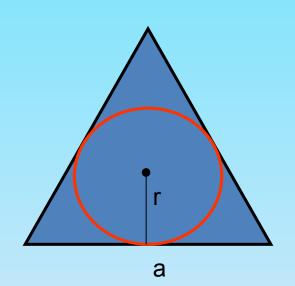
$$r = \frac{2S}{a+b+c}$$

В правильном треугольнике

$$R = \frac{a}{\sqrt{3}}$$

$$r = \frac{a\sqrt{3}}{6}$$

№ 1. В равносторонний треугольник со стороной 4 см вписана окружность. Найдите её радиус.



Решение:

$$S = \frac{a^2 \sqrt{3}}{4}$$
 u $S = p \cdot r$
 $S = \frac{4^2 \sqrt{3}}{4} = 4\sqrt{3}$

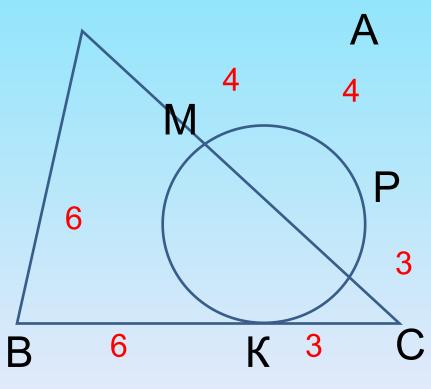
 $P = \frac{1}{2} \cdot 4 \cdot 3 = \frac{1}{2} \cdot 12 = 6(см)$ - полупериметр

$$4\sqrt{3} = 6 \cdot r$$

$$r = \frac{4\sqrt{3}}{6} = \frac{2\sqrt{3}}{3} \text{ (CM)}$$

OTBET:
$$\frac{2\sqrt{3}}{3}$$
 (CM)

№2. Окружность, вписанная в треугольник ABC, касается сторон AB, BC и AC в точках M, K и P соответственно. Найдите периметр треугольника ABC, если AP = 4 см, BM = 6 см, CK = 3 см.

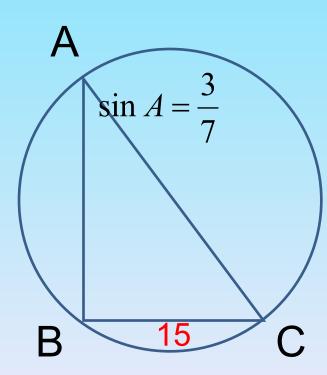


Отрезки касательных, проведенных из одной точки равны.

$$BM = BK$$
 $AB = 10$
 $AM = AP$ $AC = 7$
 $CP = CK$ $BC = 9$

$$P = 10 + 7 + 9 = 26$$

№3. Найдите диаметр окружности, описанной около прямоугольного треугольника, если синус одного из углов треугольника равен 3/7, а противолежащий этому углу катет равен 15 см.



Центр описанной около п/у треугольника окружности лежит на середине гипотенузы.

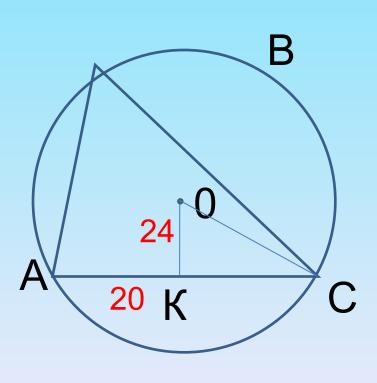
$$d = AC$$

$$\sin A = \frac{BC}{AC}$$

$$\frac{3}{7} = \frac{15}{AC}$$

$$AC = 35$$

№4. Найдите радиус окружности, описанной около треугольника, если одна из сторон треугольника равна 20 см, а расстояние от центра окружности до этой стороны равно 24 см.



Т.к. ОК \perp AC, то AK=KC=10

по т. Пифагора

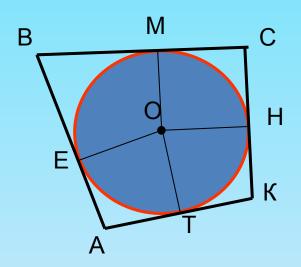
$$OC = \sqrt{10^2 + 24^2} = 26$$

Домашнее задание

В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника, если: а) гипотенуза равна 26 см, r=4 см; б) точка касания

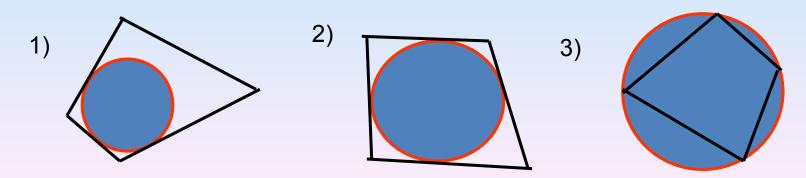
Найдите основание равнобедренного треугольника, если центр вписанной в него окружности делит высоту, проведенную к основанию, в отношении 12:5, считая от вершины, а боковая сторона равна 60 см.

Окружность, вписанная в четырёхугольник

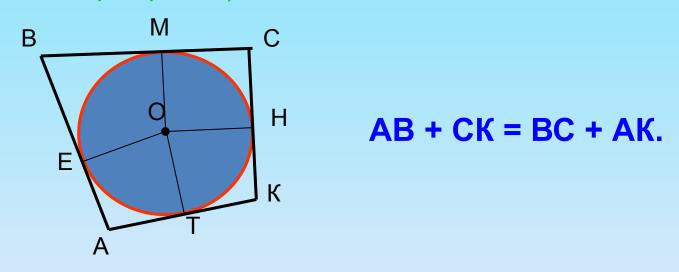


Определение: окружность называется вписанной в четырёхугольник, если все стороны четырёхугольника касаются её.

На каком рисунке окружность вписана в четырёхугольник:



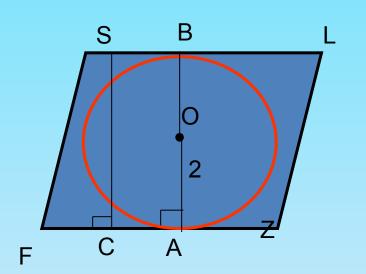
Теорема: если в четырёхугольник вписана окружность, то суммы противоположных сторон четырёхугольника равны (в любом описанном четырёхугольнике суммы противоположных сторон равны).



Обратная теорема: **если суммы противоположных сторон** выпуклого четырёхугольника равны, то в него можно вписать окружность.

(доказательство – в учебнике № 724)

Задача: в ромб, острый угол которого 60⁰, вписана окружность, радиус которой равен 2 см. Найти периметр ромба.



Дано: Окр.(О; 2 см) вписана в ромб FSLZ, $F = 60^{\circ}$.

Найти: P_{FSLZ}

Решение:

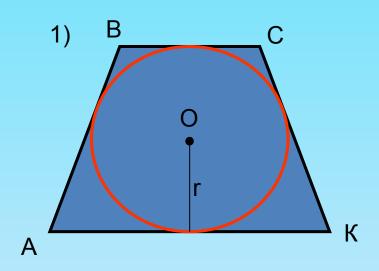
Т. к. окружность вписана в ромб, то стороны ромба касаются окружности, значит, AB FZ, ★B = 2r = 4cм – диаметр.

Проведём SC \pm Z, SC = AB (как перпендикуляры между параллельными прямыми), SC = 4cм

$$\triangle$$
FSC — прямоугольный, $SinF = \frac{SC}{FS}; Sin60^{\circ} = \frac{4}{FS}; \frac{\sqrt{3}}{2} = \frac{4}{FS}; FS = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{3}$

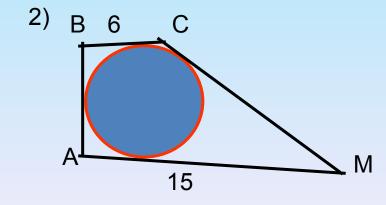
$$P_{\text{FSLZ}} = 4\text{FS} = 4 \cdot \frac{8\sqrt{3}}{3} = \frac{32\sqrt{3}}{3}$$
 (cm). Other: $\frac{32\sqrt{3}}{3}$ cm

Реши задачи



Дано: Окр.(O; r) вписана в ABCK, $P_{ABCK} = 10$

Найти: ВС + АК



Дано: ABCM описан около Окр.(O; r) BC = 6, AM = 15,

CM = 2 AB

Найти: АВ, СМ

