

Указания по управлению рисками при строительстве тоннелей

Tunnelling and Underground Space Technology 19 (2004) 217-237

Tunnelling and Underground Space Technology incorporating Trenchless Technology Research

www.elsevier.com/locate/tust

ITA/AITES Accredited Material

Guidelines for tunnelling risk management: International Tunnelling Association, Working Group No. 2 [☆]

Søren Degn Eskesen, Per Tengborg, Jørgen Kampmann, Trine Holst Veicherts

ITA Working Group 2, Research, ITA-AITES, clo EPFL, Bat GC, CH 1015 Lausanne, Switzerland

Почему необходимо управлять рисками?

- Любой проект подвержен различным факторам опасности, в зависимости от следующих условий:
 - Политическая ситуация
 - Стихийные бедствия
 - Культурные проблемы
 - Несовпадение интересов сторон, занятых осуществлением проекта
 - Технические проблемы
 - Другие факторы
- Риски необходимо выявить, оценить, нейтрализовать или исключить
- Разработка стратегии управления рисками и расчеты, связанные с рисками, начинаются на этапе проектирования

Когда осуществляется управление рисками?

- Управление рисками не прекращается до завершения проекта:
 - Этап базового проектирования
 - Критерии принятия риска
 - Качественный расчет риска
 - Этапы тендера и заключения контрактов
 - Оговорки в контракте, связанные с факторами риска
 - Требования, изложенные в тендерной документации
 - Этап строительства
 - Управление рисками подрядчика
 - Управление рисками заказчика

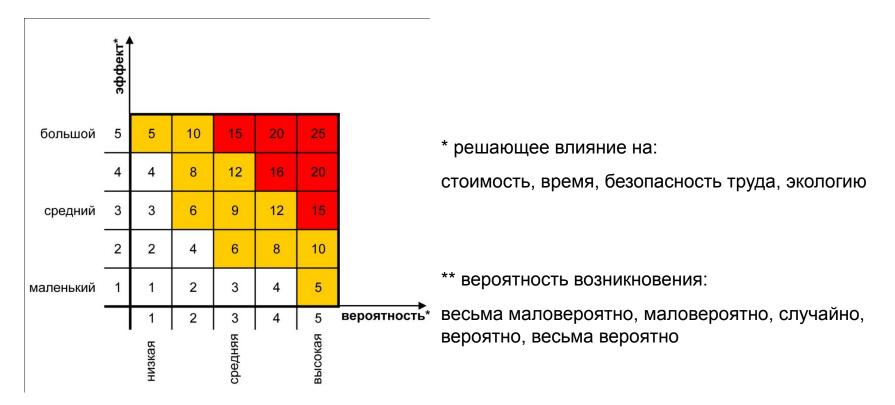
Управление рисками для РЖД на примере тоннельных комплексов №№ 3 и 5

- При управлении рисками соблюдался следующий порядок:
 - Анализ рисков
 - Определение факторов опасности (количественное и качественное)
 - Расчет рисков
 - Взвешивание степени опасности и вероятности ее возникновения
 - Оценка рисков
 - Устранение риска
 - Нейтрализация риска
 - Принятие риска

Анализ рисков

- В январе 2009 г. составлен перечень из 200 факторов опасности
- На этом этапе не выполнялся расчет степени опасности и вероятности ее возникновения
- Матрица для определения вероятности возникновения и степени возможного ущерба была составлена следующим образом:

			Оценка / степень	I: Решающее воздействие					
		1	маловероятно, редко, можно исключить	1	незначительное				
	НОСТЬ	2	невозможно, небольшая вероятность, малая вероятность, вряд ли допустимо	2	низкое				
$R = P \times I$	Р :	3	случайно, довольно редко, не исключено	3	значительное				
	Bep	4	вероятно, довольно высокая вероятность, возможно	4	высокое				
		5	вполне вероятно, высокая вероятность, необходимо предусмотреть	5	чрезвычайно высокое				



Расчет рисков

 На основе классификации, принятой с учетом степени опасности и вероятности ее возникновения, можно было подготовить следующую матрицу:

Расчет рисков

 В контексте сотрудничества с клиентом, учитывая опыт других подобных проектов, выполненных с участием специалистов Amberg Engineering, была разработана приведенная ниже стратегия:

Факторы риска 0 – 4 ► Мероприятия не требуются

Факторы риска 5 – 12 ► Рассмотрение мероприятий, при необходимости применение

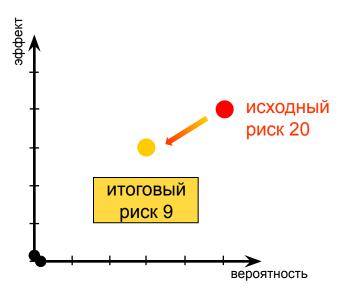
Факторы риска 12 – 25 ▶ Выполнение мероприятий обязательно

Регистрация и расчет рисков

- При подготовке таблицы рисков были определены шесть групп факторов опасности:
 - 100 Местные условия строительной площадки, включая геологию
 - 200 Проектирование
 - 300 Управление проектом
 - 400 Контроль строительных работ
 - 500 Подрядчик / строительные работы
 - 600 Чрезвычайные происшествия / несчастные случаи

Оценка рисков

- Таблица рисков обновляется постоянно
- Переоценку необходимо делать при повышении и при снижении риска
- Для новых этапов проекта необходимо определить новые факторы риска, например следующие.
 - выработка: безопасность труда, вопросы экологии
 - внутренняя обделка: время, расходы
- Пример тоннельных комплексов №№ 3 и 5 в Сочи:
 - Реестр рисков подвергается переоценке 3 4 раза в год с представлением результатов РЖД и МОК
 - На следующих слайдах приведены примеры оценки рисков, влияния на осуществление проекта и принятых решений



Пример 1: комплекс № 3 – осыпная масса у северного портала

- Фактор риска выявлен весной 2009 г.
- Извлечение из реестра рисков: отчет Р054 0003, июнь 2009 г.
 - Фактор риска 111 i1 «Участок активной осыпи»

Пример <u>1</u>: комплекс № 3 – осыпная масса у северного портала

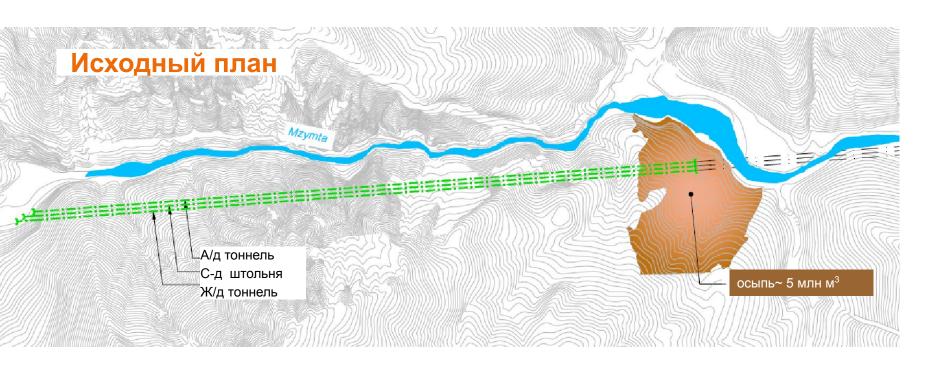
- Фактор риска выявлен весной 2009 г.
- Извлечение из реестра рисков: отчет Р054 0003, июнь 2009 г.
 - Фактор риска 111 i1 «Участок активной осыпи»
- Для фактора риска установлен уровень 20 -> неприемлемый

	111 h	Разлом на 27.1 км	Потенциально рыхлая порода		2	21				т т	Λ.	
I L					4	4	4		ــــ	\vdash	U	
	111 i	Зона северного портала (27.3 км – 27.8	См_ниже	В			20	См. ниже	ı	П	9	
		км)				_						
	111 i1	Зона осъерного портала (27.3 км – 27.8 км)	Участок активных оползневых явлений		5	4		Дальнейшее геол. и геотех. исследования Незамедлительно пробурить скважины в зоне оползневых явлений проанализировать и частично снабдить инклинаторами Спланировать встречные действия и приступить к выполнению заблаговременно	3	3	9	
	111 12		Особенно слабая / выветренная порода. Состояние неясно для оценки возможности прокладки тоннель при темоции ТПМ		4	4	16	выполнению заолаговременно Дальнейшее геол. и геотех. исследования, включая лабораторные тесты	3	4	12	

Пример <u>1</u>: комплекс № 3 – осыпная масса у северного портала

- Для фактора риска установлен уровень 20 -> неприемлемый
- Проработано несколько вариантов снижения уровня риска:
 - Стабилизация осыпной массы
 - Дренирование осыпной массы через специальный тоннель
 - Перенос проектной трассы
 - Другое

 Была сформирована рабочая группа для анализа различных вариантов и поиска наилучшего решения с технической и экономической точек зрения



Пример 1: комплекс № 3 – осыпная масса у северного портала

- Решения рабочей группы:
 - Перенос проектной трассы

Пример 1: комплекс № 3 – осыпная масса у северного портала

Пример <u>1</u>: комплекс № 3 – осыпная масса у северного портала

- Выводы и текущая ситуация
 - В результате изменения проектной трассы портал был разделен на две части (портал железнодорожного тоннеля с сервисно-дренажной штольней, и портал автодорожного тоннеля)
 - Риск для северного портала железнодорожного тоннеля и сервиснодренажной штольни (отчет Р054 – 0016, сентябрь 2010 г.)

 В связи с изменением проектной трассы и выполнением сопутствующих мероприятий уровень риска снижен с 20 до 6 баллов

вебоятность

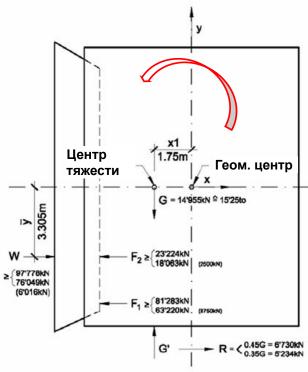
Пример 1: комплекс № 3 – осыпная масса у северного портала

- Выводы и текущая ситуация
 - Риск для северного портала железнодорожного тоннеля и сервиснодренажной штольни (отчет Р054 – 0016, сентябрь 2010 г.)

 В связи с изменением проектной трассы и выполнением сопутствующих мероприятий уровень риска удалось снизить с 20 до

	4-8 балло	OB								\triangle	,
111 h	Зона северного портала (28,08км)	см. ниже		T	1		:W. = -	T	17	1	
111 h1	Зона северного портала (28,08км)	Портал находится в пределах оползневой зоны		5	3	15	Наблюдение	2	7	6	
111 h2	Зона северного портала (28,08км)	Переход от скального грунта к почвогрунту недостаточно исследован.		4	4	16	Необходимо завершить разработку проекта; следует рассмотреть возможность выработки сервисно- дренажной штольни традиционным способом	4	2	8	
111 h3	Зона северного портала (28,08км)	Возможна задержка или неверное роектирование портала		3	4		Необходимо обеспечить геологическую поддержку для ввода данных в разработку проекта портала	2	2:	4	
	·	эффект	_	- 1	- 1	•	исходный риск 20			O	
		+	•	l	ит	ОГОЕ	вый риск 6				

вероятность



Пример <u>2</u>: комплекс № 3 – запуск ТПК на южном портале автодорожного тоннеля

Риски выявлены в апреле 2010 г. (отчет P054 – 0011, факторы 135b и 221)

- Избыточная просадка при запуске ТПК
- Заглубление ротора
- Неустойчивость забоя

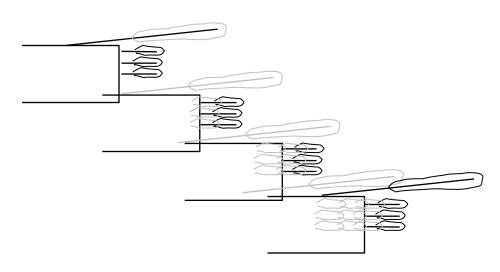
исходный риск 20

Управление рисками

Пример 2: комплекс № 3 – запуск ТПК на южном портале автодорожного тоннеля

Меры, предложенные специалистами АЕ для снижения риска на этапе запуска:

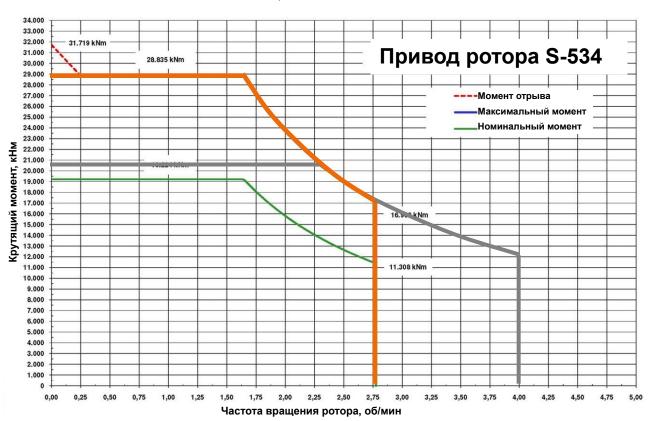
- В мае 2010 г. был подготовлен специальный отчет «Запуск ТПК» (за номером Р054-0013)
- Укрепление свода сооружением трубного зонта
- Подготовка грунта перед началом выработки
- Безотлагательная обратная засыпка
- Запуск ТПК в наклонном положении, выше проектной трассы
- Увеличение разности между значениями давления в верхних и нижних домкратах продвига
- Предварительное укрепление грунта в штроссовом участке
- После проведения предложенных мероприятий ТПК был успешно запущен 15 мая 2010 г.



Пример <u>3</u>: комплекс № 3 – повышение крутящего момента на роторе ТПК автодорожного тоннеля

- Риск выявлен в августе 2010 г. (отчет № Р054 0016, фактор риска 221)
 - Обрушение на первых метрах выработки в полное сечение
 - Заклинивание ротора

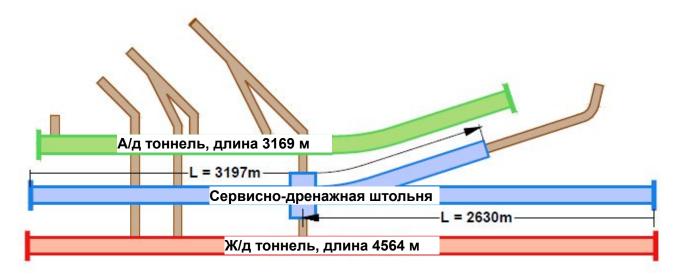
Специальные мероприятия для обеспечения последующей выработки



Пример <u>3</u>: комплекс № 3 – повышение крутящего момента на роторе ТПК автодорожного тоннеля

 Повышение крутящего момента на роторе (завершено в ноябре 2010 г., риск заклинивания ротора удалось снизить)

Ранее: 20 136 кНм , 4,00 об/мин, теперь: 28 835 кНм , 2,75 об/мин

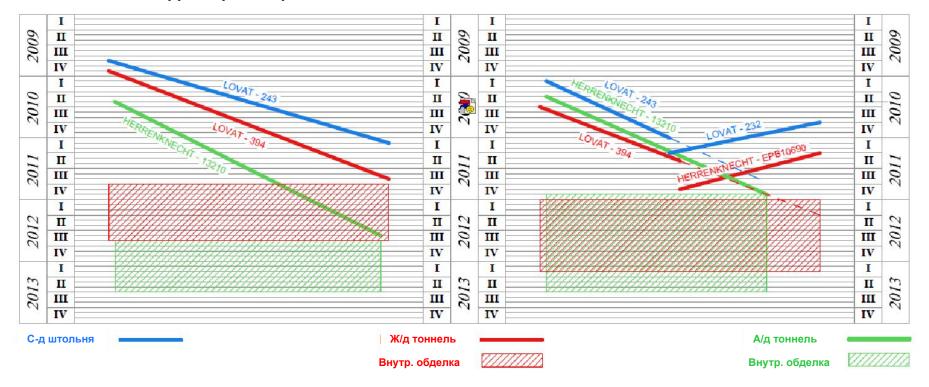


Пример 4: комплекс № 3 – график строительных работ

Решения, связанные с графиком строительных работ, необходимо обновлять постоянно.

ਠ੍ਹ

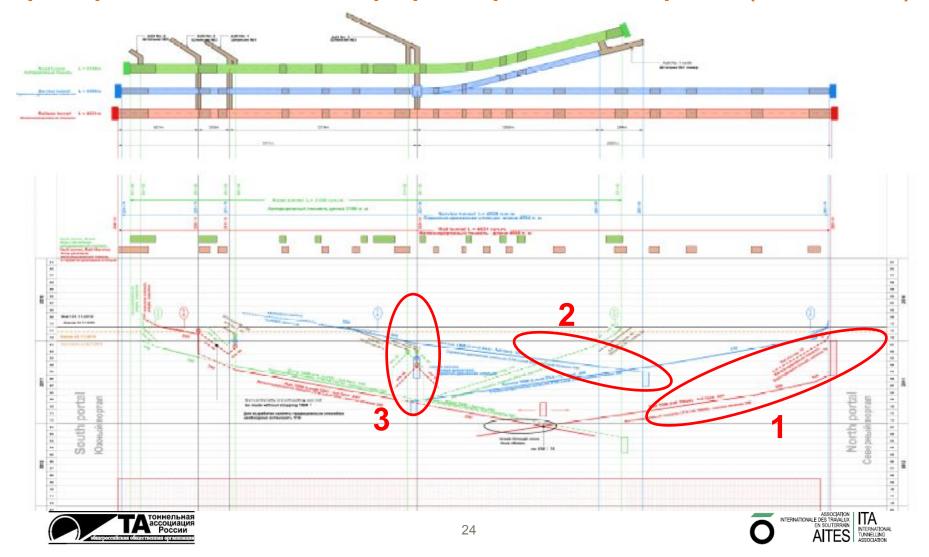
Схема после корректировки трассы

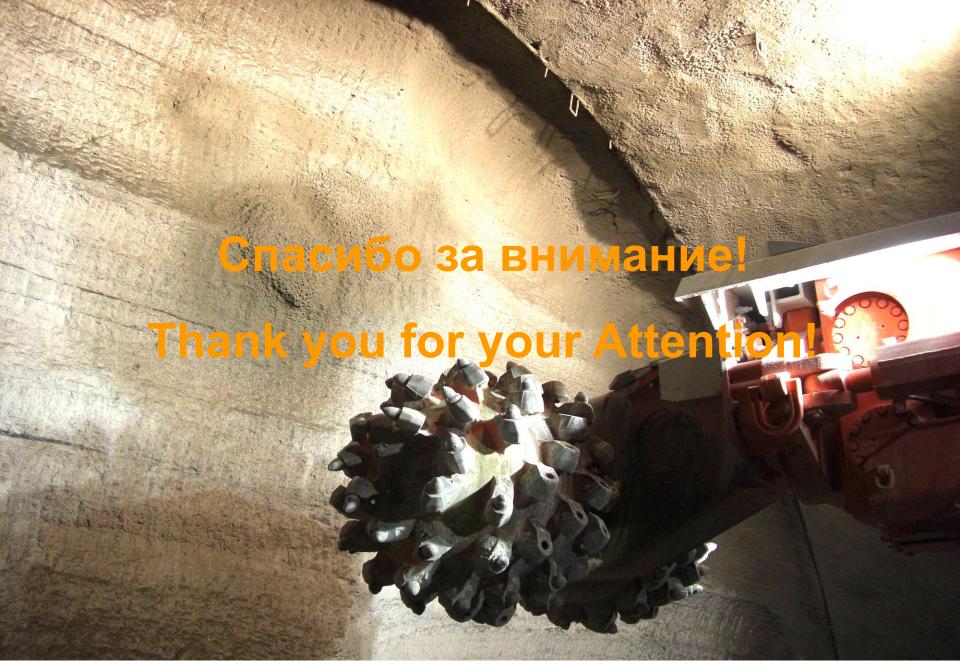


Пример 4: комплекс № 3 – график строительных работ

График строительных работ до корректировки трассы

График строительных работ после корректировки трассы





Пример 4: комплекс № 3 – график строительных работ (детальный)

