Chapter 4

Operations

on

Bits

After reading this chapter, the reader should be able to:
\square Apply arithmetic operations on bits when the integer is represented in two's complement.
\square Apply logical operations on bits.
\square Understand the applications of logical operations using masks.
\square Understand the shift operations on numbers and how a number can be multiplied or divided by powers of two using shift operations.

Operations on bits

ARITHMETIC OPERATIONS

Arithmetic operations

- Arithmetic operations involve:

Adding (+)
Subtracting (--)
Multiplying (X)
Dividing (/)
And so on...

Addition in two's complement

Number of $1 \boldsymbol{s}$

None
One
Two
Three

Table 4.1 Adding bits

Rule of Adding Integers in Two's Complement

Add 2 bits and propagate the carry to the next column. If there is a final carry after the leftmost column addition, discard (捨棄) it

Example 1

Add two numbers in two's complement representation: $(+17)+(+22) \quad \square(+39)$

Solution

Carry 1

0	0	0	1	0	0	0	1	+
0	0	0	1	0	1	1	0	

$\begin{array}{llllllllllll}\text { Result } & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & \square & 39\end{array}$

Example 2

Add two numbers in two's complement representation: $(+24)+(-17) \square(+7)$

Solution

0	0	0	1	1	0	0	0	+
1	1	1	0	1	1	1	1	

Result $\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & \square & +7\end{array}$

Example 3

Add two numbers in two's complement representation: $(-35)+(+20) \square(-15)$

Solution

$\begin{array}{llll}\text { Carry } & 1 & 1 & 1\end{array}$

$$
\begin{array}{lllllllll}
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & + \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 &
\end{array}
$$

Example 4

Add two numbers in two's complement representation: $(+127)+(+3) \square(+130)$

Solution

Carry $\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ $\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & + \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & \end{array}$

Result $1 \begin{array}{lllllllll} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \square-126 \text { (Error) }\end{array}$
An overflow has occurred.

Note:

Range of numbers in two's complement representation

$-\left(2^{N-1}\right)$---------- 0 ----------- +(2 2^{N-1}

Figure 4-2

Two's complement numbers visualization

When you do arithmetic operations on numbers in a computer, remember that each number and the result should be in the range defined by the bit allocation.

Subtraction in two's complement

Example 5

Subtract 62 from 101 in two's complement:

$$
(+101)-(+62) \square \square(+101)+(-62)
$$

Solution

Carry 11

0	1	1	0	0	1	0	1	+
1	1	0	0	0	0	1	0	

$\begin{array}{lllllllllll}\text { Result } & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & \square & 39\end{array}$

The leftmost carry is discarded.

Arithmetic operations on floating-point numbers

- Addition and subtraction for floating-point numbers are one process. (p. 54)

Check the sign. (a, b)
Move the decimal points to make the exponents the same.

- Add or subtract the mantissas (底數).
- Normalize the result before storing in memory.
- Check for any overflow.

Addition

Example 6

Add two floats:

01000010010110000000000000000000
 01000001001100000000000000000000

Solution

The exponents are 5 and 3. The numbers are:
$+2^{5} \times 1.1011$ and $+2^{3} \times 1.011$
Make the exponents the same.
$\left(+2^{5} x 1.1011\right)+\left(+2^{5} \times 0.01011\right) \square+2^{5} \times 10.00001$
After normalization $+2^{6} x 1.000001$, which is stored as:
0100001010000010000000000000000000

LOGICAL OPERATIONS

Logical operations

- A logical operation can accept 1 or 2 bits to create only 1 bit.

Unary operation (Figure4.3)
Binary operation (Figure4.3)

Figure 4-3

Unary and binary operations

a. Unary operator

Logical operations

Figure 4-5

Truth tables

			\mathbf{x}	y	x AND y
NOT			0	0	0
x	NOTx		0	1	0
0	1		1	0	0
1	0		1	1	1
OR					
\mathbf{x}	y	x OR y	\mathbf{x}	y	x XOR y
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Figure 4-6

Unary operator -- NOT operator

NOT operator

Example 7

Use the NOT operator on the bit pattern 10011000

Solution

$$
\begin{array}{lc}
\text { Target } & 10011000 \quad \text { NOT } \\
\text { Result } & 01100111
\end{array}
$$

Figure 4-7

Binary operator--AND operator

AND operator

Example 8

Use the AND operator on bit patterns 10011000 and 00110101.

Solution

Target
 10011000
 AND 00110101

Result

00010000

Inherent（本質的）rule of the AND operator

(0)
AND $\quad(\mathrm{X})$

(X)
AND $(0) \longrightarrow(0)$

Figure 4-9

Binary operator--OR operator

OR operator

Example 9

Use the OR operator on bit patterns 10011000 and 00110101

Solution

Target 10011000 OR
 00110101

Result

10111101

Inherent rule of the OR operator

(1)	OR	(X)	$\longrightarrow(1)$	
(X)	OR	(1)	\longrightarrow	\longrightarrow

Figure 4-11

Binary operator--XOR operator

XOR operator

Example 10

Use the XOR operator on bit patterns 10011000 and 00110101.

Solution

Target $10011000 \quad$ XOR 00110101

Result
10101101

Inherent rule of the XOR operator

Applications

Mask (遮罩)

Example of unsetting specific bits

Target
X X X X X X X X

Output

Example 11

Use a mask to unset (clear) the 5 leftmost bits of a pattern. Test the mask with the pattern 10100110.

Solution

The mask is 00000111.

Target 10100110 AND Mask
 Result
 00000110

Example 12

Imagine a power plant（水力發電廠）that pumps water（供水）to a city using eight pumps（抽水機）． The state of the pumps（on or off）can be represented by an 8－bit pattern．For example，the pattern 11000111 shows that pumps 1 to 3 （from the right）， 7 and 8 are on while pumps 4,5 ，and 6 are off．Now assume pump 7 shuts down．How can a mask show this situation？
Solution on the next slide.

Solution

Use the mask 10111111 to AND with the target pattern. The only 0 bit (bit 7) in the mask turns off the seventh bit in the target.
Target Mask

11000111
 AND

Result
10000111

Figure 4-15

Example of setting specific bits

Example 13

Use a mask to set the 5 leftmost bits of a pattern. Test the mask with the pattern 10100110.

Solution

The mask is 11111000.
$\begin{array}{lr}\text { Target } & 10100110 \text { OR } \\ \text { Mask } & 11111000\end{array}$
11111110

Result

Example 14

Using the power plant example, how can you use a mask to to show that pump 6 is now turned on?

Solution

Use the mask 00100000.

Result

10100111

Example of flipping（跳動的）specific bits

Target
$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$

Note： \bar{X} is the complement of \mathbf{X} ．
$\mathrm{XOR} \longrightarrow \overline{\mathrm{X}} \overline{\mathrm{X}} \overline{\mathrm{X}} \overline{\mathrm{X}} \overline{\mathrm{X}} \mathrm{X} \quad \mathrm{XX}$ Output

Example 15

Use a mask to flip the 5 leftmost bits of a pattern. Test the mask with the pattern 10100110.

Solution

Result
01011110

Shift operations

Left shift

Right shift

Example 16

Show how you can divide or multiply a number by 2 using shift operations.

Solution

If a bit pattern represents an unsigned number, a right-shift operation divides the number by two. The pattern 00111011 represents 59. When you shift the number to the right, you get 00011101, which is 29 . If you shift the original number to the left, you get 01110110 , which is 118.

Example 17

Use a combination of logical and shift operations to find the value (0 or 1) of the fourth bit (from the right).

Solution

Use the mask 00001000 to AND with the target to keep the fourth bit and clear the rest of the bits.

Continued on the next slide

Solution (continued)

Target Mask
\section*{abcdefgh AND 00001000}
Result 0000 e 000

Shift the new pattern three times to the right 0000 e000 $\square 00000 \mathrm{e} 00 \square 000000 \mathrm{e} 0 \square 0000000 \mathrm{e}$

Now it is easy to test the value of the new pattern as an unsigned integer. If the value is 1 , the original bit was 1; otherwise the original bit was 0 .

Key terms

－AND operator
－Arithmetic operation
－Binary operation
－Binary operator
－Carry
－Clear
－Flip
－Floating－point number

- Force（強迫）to 0
- Force（強迫）to 1
－Logical operation
－Mantissa
－Mask
－NOT operator
－OR operator
－Overflow
－Set
－Truth table
－Two＇s complement
－Unary operation
－Unary operator
－Unset
－XOR operator

