
©Brooks/Cole, 2003

Chapter 4

Operations
on

Bits



©Brooks/Cole, 2003

Apply arithmetic operations on bits when the integer is
represented in two’s complement.
Apply logical operations on bits.

Understand the applications of logical operations 
using masks.

After reading this chapter, the reader 
should be able to:

OBJECTIVES

Understand the shift operations on numbers and how 
a number can be multiplied or divided by powers of 
two using shift operations.



©Brooks/Cole, 2003

Figure 4-1

Operations on bits



©Brooks/Cole, 2003

ARITHMETIC
OPERATIONS

4.1



©Brooks/Cole, 2003

Arithmetic operations

● Arithmetic operations involve:
● Adding (+)
● Subtracting (--)
● Multiplying (X)
● Dividing (/)
● And so on…



©Brooks/Cole, 2003

Table 4.1  Adding bits

Number of 1s
------------

None
One
Two

Three

Result
------------

0
1
0
1

Carry
------------

-
-
1
1

Addition in two’s complement



©Brooks/Cole, 2003

Rule of Adding Integers in 
Two’s Complement

Add 2 bits and propagate the carry 
to the next column. If there is a final 

carry after the leftmost column 
addition, discard (捨棄) it. 

Note:



©Brooks/Cole, 2003

Example 1
Add two numbers in two’s complement 
representation:  (+17) + (+22)  🡺  (+39)

Solution

Carry          1

0   0   0    1    0    0     0     1     +
0   0   0    1    0    1     1     0

----------------------------------
Result 0   0   1    0    0    1     1     1       🡺   39



©Brooks/Cole, 2003

Example 2
Add two numbers in two’s complement 
representation:  (+24) + (-17)  🡺  (+7)

Solution

Carry    1   1    1    1   1

0   0   0    1    1    0     0     0     +
1   1   1    0    1    1     1     1

----------------------------------
Result 0   0   0    0    0    1     1     1       🡺   +7



©Brooks/Cole, 2003

Example 3
Add two numbers in two’s complement 
representation:  (-35) + (+20)  🡺  (-15)

Solution

Carry          1    1    1

1   1   0    1    1    1     0     1     +
0   0   0    1    0    1     0     0

----------------------------------
Result 1   1   1    1    0    0     0     1       🡺   -15



©Brooks/Cole, 2003

Example 4
Add two numbers in two’s complement 
representation:  (+127) + (+3)  🡺  (+130)

Solution
Carry      1   1   1    1    1    1    1

      0   1   1    1    1    1    1    1     +
      0   0   0    0    0    0    1    1

      ----------------------------------
Result      1   0   0    0    0    0    1    0    🡺 -126 (Error)
                 An overflow has occurred. 



©Brooks/Cole, 2003

Range of numbers in two’s 
complement representation

- (2N-1)   ---------- 0 -----------  +(2N-1 
–1)

Note:



©Brooks/Cole, 2003

Figure 4-2

Two’s complement numbers visualization



©Brooks/Cole, 2003

When you do arithmetic operations on
numbers in a computer, remember that
each number and the result should be

in the range defined by the bit allocation. 

Note:



©Brooks/Cole, 2003

Example 5
Subtract 62 from 101 in two’s complement:  
       (+101) - (+62)  🡺🡺  (+101) + (-62)

Solution
Carry     1   1

0   1   1    0    0    1     0     1     +
1   1   0    0    0    0     1     0

----------------------------------
Result 0   0   1    0    0    1     1     1       🡺   39
The leftmost carry is discarded.

Subtraction in two’s complement



©Brooks/Cole, 2003

Arithmetic operations on 
floating-point numbers
● Addition and subtraction for floating-point 

numbers are one process. (p. 54)
● Check the sign. (a, b)
● Move the decimal points to make the exponents 

the same.
● Add or subtract the mantissas (底數).
● Normalize the result before storing in memory.
● Check for any overflow.



©Brooks/Cole, 2003

Example 6
Add two floats:
0 10000100  10110000000000000000000  
0 10000010  01100000000000000000000  

Solution

The exponents are 5 and 3. The numbers are:
+25  x  1.1011    and    +23  x  1.011
Make the exponents the same.
(+25  x  1.1011)+ (+25  x  0.01011) 🡺  +25 x 10.00001
After normalization  +26 x 1.000001, which is stored as:
0 10000101  000001000000000000000000

Addition



©Brooks/Cole, 2003

LOGICAL
OPERATIONS

4.2



©Brooks/Cole, 2003

Logical operations

● A logical operation can accept 1 or 2 bits to 
create only 1 bit.
● Unary operation (Figure4.3)
● Binary operation (Figure4.3)



©Brooks/Cole, 2003

Figure 4-3

Unary and binary operations



©Brooks/Cole, 2003

Figure 4-4

Logical operations



©Brooks/Cole, 2003

Figure 4-5

Truth tables



©Brooks/Cole, 2003

Figure 4-6

Unary operator -- NOT operator



©Brooks/Cole, 2003

Example 7

Use the NOT operator on the bit pattern 10011000

Solution

Target  1 0 0 1 1 0 0 0        NOT
                          ------------------
Result                 0 1 1 0 0 1 1 1

NOT operator



©Brooks/Cole, 2003

Figure 4-7

Binary operator--AND operator



©Brooks/Cole, 2003

Example 8

Use the AND operator on bit patterns 10011000 
and 00110101.

Solution

Target  1 0 0 1 1 0 0 0        AND
                           0 0 1 1 0 1 0 1
                          ------------------
Result                0 0 0 1 0 0 0 0

AND operator



©Brooks/Cole, 2003

Figure 4-8

Inherent (本質的) rule of the AND operator



©Brooks/Cole, 2003

Figure 4-9

Binary operator--OR operator



©Brooks/Cole, 2003

Example 9

Use the OR operator on bit patterns 10011000 and 
00110101

Solution

Target  1 0 0 1 1 0 0 0        OR
                           0 0 1 1 0 1 0 1
                          ------------------
Result                1 0 1 1 1 1 0 1

OR operator



©Brooks/Cole, 2003

Figure 4-10

Inherent rule of the OR operator



©Brooks/Cole, 2003

Figure 4-11

Binary operator--XOR operator



©Brooks/Cole, 2003

Example 10

Use the XOR operator on bit patterns 10011000 
and 00110101.

Solution

Target  1 0 0 1 1 0 0 0        XOR
                           0 0 1 1 0 1 0 1
                          ------------------
Result                 1 0 1 0 1 1 0 1

XOR operator



©Brooks/Cole, 2003

Figure 4-12

Inherent rule of the XOR operator



©Brooks/Cole, 2003

Figure 4-13

Mask (遮罩)

Applications



©Brooks/Cole, 2003

Figure 4-14

Example of unsetting specific bits



©Brooks/Cole, 2003

Example 11
Use a mask to unset (clear) the 5 leftmost bits of a 
pattern. Test the mask with the pattern 10100110.

Solution
The mask is 00000111.

Target  1 0 1 0 0 1 1 0        AND
Mask                  0 0 0 0 0 1 1 1
                          ------------------
Result                 0 0 0 0 0 1 1 0



©Brooks/Cole, 2003

Example 12

Imagine a power plant (水力發電廠) that pumps 
water (供水) to a city using eight pumps (抽水機). 
The state of the pumps (on or off) can be 
represented by an 8-bit pattern. For example, the 
pattern 11000111 shows that pumps 1 to 3 (from 
the right), 7 and 8 are on while pumps 4, 5, and 6 
are off. Now assume pump 7 shuts down. How can 
a mask show this situation?

Solution on the next slide.



©Brooks/Cole, 2003

Use the mask 10111111 to AND with the target 
pattern. The only 0 bit (bit 7) in the mask turns 
off the seventh bit in the target.

Target  1 1 0 0 0 1 1 1        AND
Mask                  1 0 1 1 1 1 1 1
                          ------------------
Result                 1 0 0 0 0 1 1 1

Solution



©Brooks/Cole, 2003

Figure 4-15

Example of setting specific bits



©Brooks/Cole, 2003

Example 13
Use a mask to set the 5 leftmost bits of a pattern. 
Test the mask with the pattern 10100110.

Solution

The mask is 11111000.

Target  1 0 1 0 0 1 1 0         OR
Mask                  1 1 1 1 1 0 0 0
                          ------------------
Result                 1 1 1 1 1 1 1 0



©Brooks/Cole, 2003

Example 14
Using the power plant example, how can you use a 
mask to to show that pump 6 is now turned on? 

Solution
Use the mask 00100000.

Target  1 0 0 0 0 1 1 1         OR
Mask                  0 0 1 0 0 0 0 0
                          ------------------
Result                 1 0 1 0 0 1 1 1



©Brooks/Cole, 2003

Figure 4-16

Example of flipping (跳動的) specific bits



©Brooks/Cole, 2003

Example 15

Use a mask to flip the 5 leftmost bits of a pattern. 
Test the mask with the pattern 10100110.

Solution

Target  1 0 1 0 0 1 1 0        XOR
 Mask                 1 1 1 1 1 0 0 0
                          ------------------
Result                 0 1 0 1 1 1 1 0



©Brooks/Cole, 2003

SHIFT
OPERATIONS

4.3



©Brooks/Cole, 2003

Figure 4-17

Shift operations

Right shiftLeft shift 



©Brooks/Cole, 2003

Solution

If a bit pattern represents an unsigned number, a 
right-shift operation divides the number by two. 
The pattern 00111011 represents 59. When you 
shift the number to the right, you get 00011101, 
which is 29. If you shift the original number to the 
left, you get 01110110, which is 118.

Example 16
Show how you can divide or multiply a number by
2 using shift operations.



©Brooks/Cole, 2003

Example 17

Use the mask 00001000 to AND with the target to 
keep the fourth bit and clear the rest of the bits.

Solution

Use  a combination of logical and shift operations 
to find the value (0 or 1) of the fourth bit (from the 
right).

Continued on the next slide



©Brooks/Cole, 2003

Solution (continued)

Target        a b c d e  f g h        AND
 Mask                 0 0 0 0 1 0 0 0
                          ------------------
Result                 0 0 0 0 e  0 0 0

Shift the new pattern three times to the right

   0000e000 🡺 00000e00 🡺 000000e0 🡺 0000000e

Now it is easy to test the value of the new pattern as 
an unsigned integer. If the value is 1, the original bit 
was 1; otherwise the original bit was 0.



©Brooks/Cole, 2003

Key terms

● AND operator
● Arithmetic operation
● Binary operation
● Binary operator
● Carry
● Clear
● Flip
● Floating-point number
● Force (強迫) to 0
● Force (強迫) to 1
● Logical operation

● Mantissa
● Mask
● NOT operator
● OR operator
● Overflow
● Set
● Truth table
● Two’s complement
● Unary operation
● Unary operator
● Unset
● XOR operator


