АЛКАНЫ (строение и изомерия)

Hexane

Конформации этана

Ethane-staggered conformation

Ethane — eclipsed conformation

Конформации пропана и бутана

The eclipsed conformation of propane has three interactions—two ethane-type hydrogen–hydrogen interactions and one additional hydrogen–methyl interaction. Since each eclipsing $H \longleftrightarrow H$ interaction is the same as that in ethane and thus has an energy "cost" of 4.0 kJ/mol, we can assign a value of $14 - (2 \times 4.0) = 6.0$ kJ/mol (1.4 kcal/mol) to the eclipsing $H \longleftrightarrow CH_3$ interaction

Staggered propane

Eclipsed propane

Butane—anti conformation (0 kJ/mol) Butane – eclipsed conformation (16 kJ/mol)

Butane—eclipsed conformation (16 kJ/mol)

Butane—gauche conformation (3.8 kJ/mol)

Butane—gauche conformation (3.8 kJ/mol)

Butane—eclipsed conformation (19 kJ/mol)

Dihedral angle between methyl groups

Table 3.5 Energy Costs for Interactions in Alkane Conformers

Interaction	Cause	Energy cost	
		(kJ/mol)	(kcal/mol)
H ←→ H eclipsed	Torsional strain	4.0	1.0
$H \longleftrightarrow CH_3$ eclipsed	Mostly torsional strain	6.0	1.4
$CH_3 \longleftrightarrow CH_3$ eclipsed	Torsional and steric strain	11	2.6
$CH_3 \longleftrightarrow CH_3$ gauche	Steric strain	3.8	0.9

Sight along the C2—C3 bond of 2,3-dimethylbutane, and draw a Newman projection of the most stable conformation.

Draw a Newman projection along the C2—C3 bond of the following conformation of 2,3-dimethylbutane, and calculate a total strain energy:

Sight along the C2—C1 bond, 2-methylpropane (isobutane) and

- (a) draw a Newman projection of the most stable conformation.
- **(b)** draw a Newman projection of the least stable conformation.
- (c) make a graph of energy versus angle of rotation around the C2—C1 bond.
- (d) Since an H ←→ H eclipsing interaction costs 4.0 kJ/mol and an H ←→ CH₃ eclipsing interaction costs 6.0 kJ/mol, assign relative values to the maxima and minima in your graph.

Consider 2-methylbutane (isopentane). Sighting along the C2–C3 bond:

- (a) Draw a Newman projection of the most stable conformation.
- (b) Draw a Newman projection of the least stable conformation.
- (c) If a CH₃ ← CH₃ eclipsing interaction costs 11 kJ/mol (2.5 kcal/mol) and a CH₃ ← CH₃ gauche interaction costs 3.8 kJ/mol (0.9 kcal/mol), make a quantitative plot of energy versus rotation about the C2–C3 bond.

Construct a qualitative potential-energy diagram for rotation about the C–C bond of 1,2-dibromoethane. Which conformation would you expect to be most stable? Label the anti and gauche conformations of 1,2-dibromoethane.

Алкильные группы

Locant—Prefix—Parent—Suffix

Where are the substituents and functional groups?

What are the substituents?

How many carbons?

What is the primary functional group?

Какой простейший алкан будет содержать энантиомер?

