Тепловые двигатели. История создания. Устройство. Принцип действия.КПД.

История создания

- **1690** пароатмосферная машина Д.Папена
- 1705 пароатмосферная машина Т.Ньюкомена для подъема воды из шахты
- <u>1763-1766</u> паровой двигатель И.И.Ползунова
- **1784** паровой двигатель Дж.Уатта
- 1865 двигатель внутреннего сгорания Н.Отто
- **1871** холодильная машина К.Линде
- 1897 двигатель внутреннего сгорания Р.Дизеля (с самовоспламенением)

Детали и принцип работы паровой машины

Для работы паровой машины потребуется паровой котёл. Поступающий из него пар, расширяется и воздействует на поршень или же на лопатки паротурбины, затем их движение передаётся. Самое востребованное и практически незаменимое применение паровых машин (как не странно) на танкерах.

Там они необходимы для привода грузовых насосов. Перекачка мазута, дизельного топлива, керосина, бензина и т. д.

Отсутствие появления статистического электричества, в поршневом насосе, приводимым в действие паровой машиной обеспечивает максимальную пожаробезопасносные механические части устройства. Основная деталь насосов, компрессоров и поршневых двигателей внутреннего сгорания, служащая для преобразования энергии сжатого газа в энергию поступательного движения

Коэффициент полезного действия (КПД)

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Схема его понятна и проста, доступна даже ученикам средней школы. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Формула для нахождения КПД

КПД

Под коэффициентом полезного действия (КПД) машины понимают отношение полезной работы к той энергии, которая выделилась при полном сгорании топлива.

$$\eta = \frac{A}{Q}.100\%$$

$$\eta = \frac{Q_1 - Q_2}{Q_2} \cdot 100$$

$$\eta = \frac{T_1 - T_2}{T_1} \cdot 100$$

Применение теплового двигателя

В авиации на легких самолетах устанавливают поршневые двигатели, а на огромных лайнерах — турбовинтовые и реактивные двигатели, которые также относятся к тепловым двигателям. Реактивные двигатели применяются и на космических ракетах. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы дешевую

электроэнергию и были бы лишены всех видов современного скоростного транспорта.

На железнодорожном транспорте до середины XX в. основным двигателем была паровая мацина. Теперь же главным образом используют тепловозы с дизельными установками и электровозы. Но и электровозы получают энергию от тепловых двигателей электростанций.

Виды тепловых двигателей

- 1) **Двигатель Стирлинга** тепловая машина, в которой рабочее тело, в виде газа или жидкости, движется в замкнутом объёме, разновидность двигателя внешнего сгорания.
- 2) Паровая машина тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно поступательного движения поршня, а затем во вращательное движение вала.
- 3) Поршневой двигатель двигатель внутреннего сгорания, в котором тепловая энергия расширяющихся газов, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень.
- 4) Реактивные и ракетные двигатели -представляет собой совмещенный тепловой двигатель и движетель, в нём внутренняя энергия топлива преобразуется в кинетическую энергию реактивной струи разогретого рабочего тела. Реактивные двигатели отбрасывают нагретое рабочее тело с большой скоростью, за счет его проистечения, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении.

Применение тепловых двигателей в нашей жизни

Автотранспорт

Водный транспорт Железнодорожн ый транспорт

Авиащия

lopumeable TIBC

TIBC TYPOME

TIBNITATION THE HEAL

THE WANTE OF THE PARTY OF THE P

Заключение

□ Целью данной презентации было рассмотрение работы теплого двигателя, истории его создания. Я узнал много новой полезной информации. Узнал, что тепловые двигатели делятся на не сколько типов такие как: ДВС, двигатель Стирленга и Реактивные двигателя.

□ СПАСИБО ЗА ВНИМАНИЕ!