Virtualization Technology

Zhiming Shen

Virtualization: rejuvenation

1960’s: first track of virtualization

— Time and resource sharing on expensive mainframes
— IBM VM/370

Late 1970’s and early 1980’s: became unpopular
— Cheap hardware and multiprocessing OS

Late 1990’s: became popular again

— Wide variety of OS and hardware configurations
— VMWare

Since 2000: hot and important
— Cloud computing

IBM VM/370

* Robert Jay Creasy (1939-2005)

— Project leader of the first full virtualization
hypervisor: IBM CP-40, a core component in the
VM system

— The first VM system: VM/370

IBM VM/370

Conversatio Spe3§)|IZEd Mainstream
Virtual nal Monitor OS (MVS, Another
- System subsystem DOS/VSE fl copy of VM
machines (RSCS, RACF,

(CMS) etc.)

GCS)

Hypervisor Control Program (CP)

Hardware System/370

IBM VM/370

* Technology: trap-and-emulate

Problem Application

Privileged

Emulate

Virtualization on x86 architecture

* Challenges

— Correctness: not all privileged instructions
produce traps!
* Example: popf
— Performance:
» System calls: traps in both enter and exit (10X)

* |/O performance: high CPU overhead
* Virtual memory: no software-controlled TLB

Virtualization on x86 architecture

* Solutions:
— Dynamic binary translation & shadow page table
— Hardware extension
— Para-virtualization (Xen)

Dynamic binary translation

 |dea: intercept privileged instructions by
changing the binary

e Cannot patch the guest kernel directly (would
be visible to guests)

* Solution: make a copy, change it, and execute
it from there

— Use a cache to improve the performance

Dynamic binary translation

* Pros:
— Make x86 virtualizable
— Can reduce traps

* Cons:
— Overhead

— Hard to improve system calls, 1/O operations
— Hard to handle complex code

Shadow page table

Linear address:

31 24|23 16|15 817 0
10 4710 12
page directory
< page table =
L
> B
32 bit PD = a
entry o b
e o o
E
- L
= 32 bit PT :
entry %
> .
// 328 -
& CR3 »

*) 32 bits aligned to a 4-KByte boundary

Shadow page table

Guest Guest
Guest page Virtual Physical
table AS AS

Machine
Memory

Guest A 2
/v\
6 //
______________________ Shadow page
Guest B 2 v

Shadow page table

* Pros:
— Transparent to guest VMs

— Good performance when working set fit into
shadow page table

* Cons:

— Big overhead of keeping two page tables
consistent

— Introducing more issues: hidden fault, double
paging ...

Hardware support

* First generation - processor
* Second generation - memory
* Third generation — 1/O device

First generation: Intel VT-x & AMD SVM

e Eliminating the need of binary translation

Host mode Guest mode

Ring2 ' Ring2

Ringl m Ringl

Second generation: Intel EPT & AMD
NPT

* Eliminating the need to shadow page table

Future Extensions: EPT

EPT: Overview
EPT Base Pointer

Guest Intel® 64 Host
Linear Page i Physical
Address Tables Address Tables Address

» Intel® 64 page tables
- Map guest-linear to guest-physical (translated again)
— Can be read and written by guest

* New EPT page tables under VMM control
- Map guest-physical to host-physical (accesses memory)
- Referenced by new EPT base pointer

 No VM exits due to page faults, INVLPG, or CR3 accesses

Third generation: Intel VT-d & AMD
IOMMU

* |/O device assighment
— VM owns real device

* DMA remapping
— Support address translation for DMA

* Interrupt remapping
— Routing device interrupt

Para-virtualization

* Full vs. para virtualization

Full-virtualization Para-virtualization
SBGE0E £ e
8 Modified
Guest OS Guest OS Guest OS
Hypervisor’'VMM Hypervisor/'VMM
X86 Hardware X86 Hardware

Xen and the art of virtualization

* SOSP’03
* Very high impact

Citation count in Google scholar

60C0

5153

5000

4000

3000

2286

2000

1413

1219 1229

e B BN

Disco (1937 Afastfile SPIN {1995) Exokernel Coda (1980) Log-structured The UNIX End-to-end Xen(2003)
system for [1995) file system time-sharing argumentsin
UNIX (1984) (1932) system (1974) system design
{1984)

Overview of the Xen approach

e Support for unmodified application binaries
(but not OS)

— Keep Application Binary Interface (ABI)

* Modify guest OS to be aware of virtualization
— Get around issues of x86 architecture
— Better performance

* Keep hypervisor as small as possible
— Device driver is in Dom0

Xen architecture

User User User
Software Software Software

GuestOS GuestOS GuestOS
(XenoLinux) (XenoBSD) (XenoXP)

Xeno-Aware Xeno-Aware Xeno-Aware Xeno-Aware
Device Drivers Device Drivers Device Drivers Device Drivers

<mx

Virtualization on x86 architecture

* Challenges

— Correctness: not all privileged instructions
produce traps!
* Example: popf
— Performance:
» System calls: traps in both enter and exit (10X)

* |/O performance: high CPU overhead
* Virtual memory: no software-controlled TLB

CPU virtualization

* Protection
— Xen in ring0, guest kernel in ringl

— Privileged instructions are replaced with
hypercalls

* Exception and system calls
— Guest OS registers handles validated by Xen
— Allowing direct system call from app into guest OS
— Page fault: redirected by Xen

CPU virtualization (cont.)

* |Interrupts:
— Lighweight event system
* Time:
— Interfaces for both real and virtual time

Memory virtualization

e Xen exists in a 64MB section at the top of
every address space

* Guest sees real physical address

* Guest kernels are responsible for allocating
and managing the hardware page tables.

» After registering the page table to Xen, all
subsequent updates must be validated.

1/0 virtualization

* Shared-memory, asynchronous buffer

descriptor rings
7 Request Producer
Shared pointer
/ updated by guest OS
||
f

Response Consumer
Private pointer
in guest OS

Request Consumer

Private pointer
in Xen \

Response Producer
Shared pointer

updated by
Xen

[|Request queue - Descriptors queued by the VM but not yet accepted by Xen
I Outstanding descriptors - Descriptor slots awaiting a response from Xen
[|Response queue - Descriptors returned by Xen in response to serviced requests
[] Unused descriptors

Porting effort

OS subsection # lines
Linux XP
Architecture-independent 78 1299
Virtual network driver 484 —
Virtual block-device driver 1070 -
Xen-specific (non-driver) 1363 3321
Total 2995 4620

(Portion of total x86 code base 1.36% 0.04%)

Table 2: The simplicity of porting commodity OSes to Xen. The
cost metric is the number of lines of reasonably commented and
formatted code which are modified or added compared with the
original x86 code base (excluding device drivers).

Evaluation

1.1

1714
16533
418
400
518
514

1.0

09

0.8

iI
Sl

0.7

0.6
0.5

0.4

Relative score to Linux

0.3

0.2

AN e e

0.1

_E

L X V U L X V U L X V. U
SPEC INT2000 (score) Linux build time (s) OSDB-IR (tup/s) OSDB-OLTP (tup/s) dbench (score) SPEC WEB99 (score)

0.0

Figure 3: Relative performance of native Linux (L), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).

Evaluation

8 - 2
« 1000 s = 8 20 e
5 5 = 3 . F g 5
5 H 2
5 g B l @
E " e
8 b o
w600 . H =_‘23
:] :
§ 2
4 |
s ;
© 2
; il :
(=]
= o
g 200 : 3
<
:]
L X | e L. X L X L X 1 2 4 8 a(dif) 1 2 4 8 aidiff)
1 2 4 8 16 OSDB-IR OSDB-OLTP
Simultaneous SPEC WEBS9 Instances on Linux (L) and Xen(X) Simultaneous OSDB-IR and OSDB-OLTP Instances on Xen
Figure 4: SPEC WEBY9 for 1. 2, 4, 8 and 16 concurrent Apache Figure 5: Performance of multiple instances of PostgreSQL
servers: higher values are better. running OSDB in separate Xen domains. 8(diff) bars show per-

formance variation with different scheduler weights.

Evaluation

T T T I | | |
2.0 fprsl—sed —L | e

5

a * + * + *

5 18

-

e

= 16

E

= 14

E

S 12 Linux —+— -

XenoLinux (5ms time slice) —#—

1.0 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Concurrent Processes/Domains

Figure 6: Normalized aggregate performance of a subset of
SPEC CINT2000 running concurrently on 1-128 domains

Conclusion

Xx86 architecture makes virtualization challenging

Full virtualization

— unmodified guest OS; good isolation
— Performance issue (especially 1/0)
Para virtualization:

— Better performance (potentially)

— Need to update guest kernel

Full and para virtualization will keep evolving
together

