Solving Malware Classification Task using Python

> Student: Yana Cherepinina Matriculation number: 28345

``.__<

My interests:

data analysis and visualization; machine learning; cybersecurity-related data analytics

Topic is important because:

application of machine learning techniques for malware detection allows to keep pace with malware evolution and combat security threats more effectively compared to other methods.

Terms

22

software that is specifically designed to disrupt, damage, or gain unauthorized access to a computer system

Benign Ware

ordinary software without any malicious activity

Dataset collection

 \square

With data collection, "the sooner the better", is always the best answer.

—Marissa Mayer

Problem

Create a dataset with features that will help the system distinguish between good and bad files:

find files representing malicious and benign activity

extract features from these files and tabulate them

Found:

3077 binary malicious files

+

collected from "VX Heavens Virus Collection"

1952 binary benign files

collected on local PC

010110

pefile

+

Solution M

Extracted:

100 features from binary portable executable files (.exe, .dll, .sys, etc.) using "pefile" python module

.CSV

IMAGE_DIRECTORY_ENTRY_DEBUG:Size	IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG:Size	IMAGE_DIRECTORY_ENTRY_IAT:Size	 Target
0	0	880	 Malware
28	148	1168	 Benign
0	Θ	348	 Malware
0	0	2392	 Benign
0	0	1632	 Benign
28	64	600	 Malware
56	64	852	 Malware
112	64	528	 Benign
56	64	468	 Benign

02.

 \bigcirc

Dataset reduction

Redundancy is expensive but indispensable.

Problem

Select features that yield the most accurate results:

apply data reduction algorithms

 \mathbf{x}

obtain dataset with reduced dimensionality

Applied:

+

Feature importance technique based on Gini importance metric

for input features with low correlation

Principal component analysis (PCA)

for input features with high correlation

Solution v

Obtained:

+

10 features with the highest scores; the higher, the more important the feature

Obtained:

+

reduced the dimensionality of the data from 8 to 2

Principal component 1 - **78.77%** of the variance

Principal component 2 - **13.03%** of the variance

 \square

Building a machine learning model

What we want is a machine that can learn from experience.

Problem

Determine which file is malicious and which is benign:

split the data into training and validation sets

apply a machine learning algorithm

hm

The data was split into:

+

5 equal folds

Each fold was used for both training and validation.

Applied:

Decision Trees Classifier algorithm.

Built Decision Tree.

+

Classification rate (accuracy score): 0.9371

1

Libraries & frameworks used

Pandas Numpy Pefile Scikit-learn Matplotlib Math

Resources

M. Zubair Shafiq et al. (2009) PE-Miner: Mining Structural Information to Detect Malicious Executables in Realtime. In: Engin Kirda, Somesh Jha, Davide Balzarotti, eds. Recent Advances in Intrusion Detection, 12th International Symposium, Saint-Malo: Springer, pp. 121-141.

Presentation template

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, infographics & images by <u>Freepik</u>

California State University (2021) Malware, Trojan, and Spyware. [online], available from: https://www.csuchico.edu/isec/stories/malware-troja ns-spyware.shtml#:~:text=Malware%3A%20Malware %20is%20short%20for,access%20to%20a%20comput er%20system. [accessed 13 June 2021]

Thanks!

Does anyone have any questions? chereyana3@gmail.com

Source code

https://github.com/YanaCh/MalwareAnalysis

