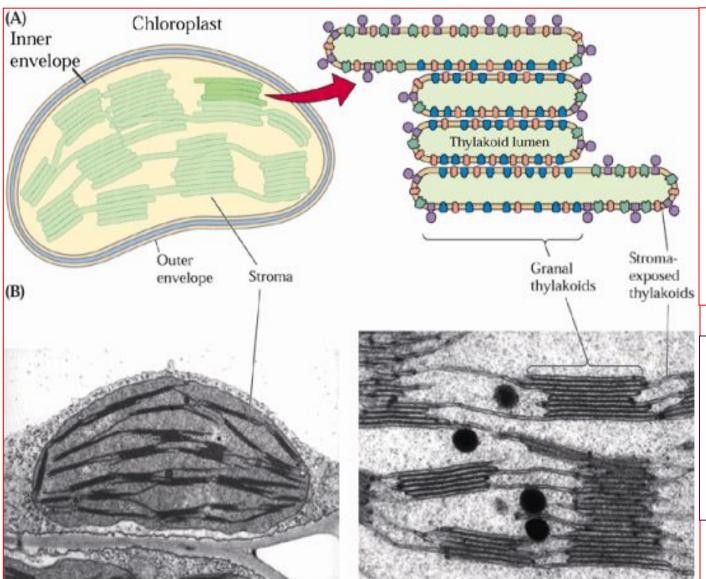
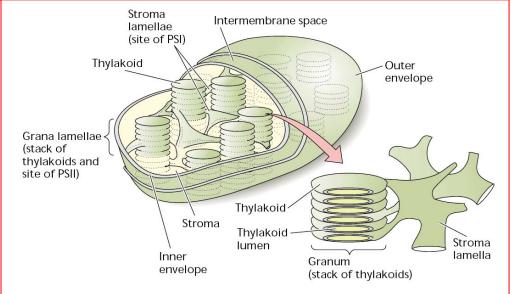
Тема: XИМИЗМ ФОТОСИНТЕЗА.

Фотосинтез включает два главнейших этапа, последовательно связанных между собой.

• Этап поглощения и преобразования энергии (явление, получившее название светового процесса(в тилакоидах хлоропластов)

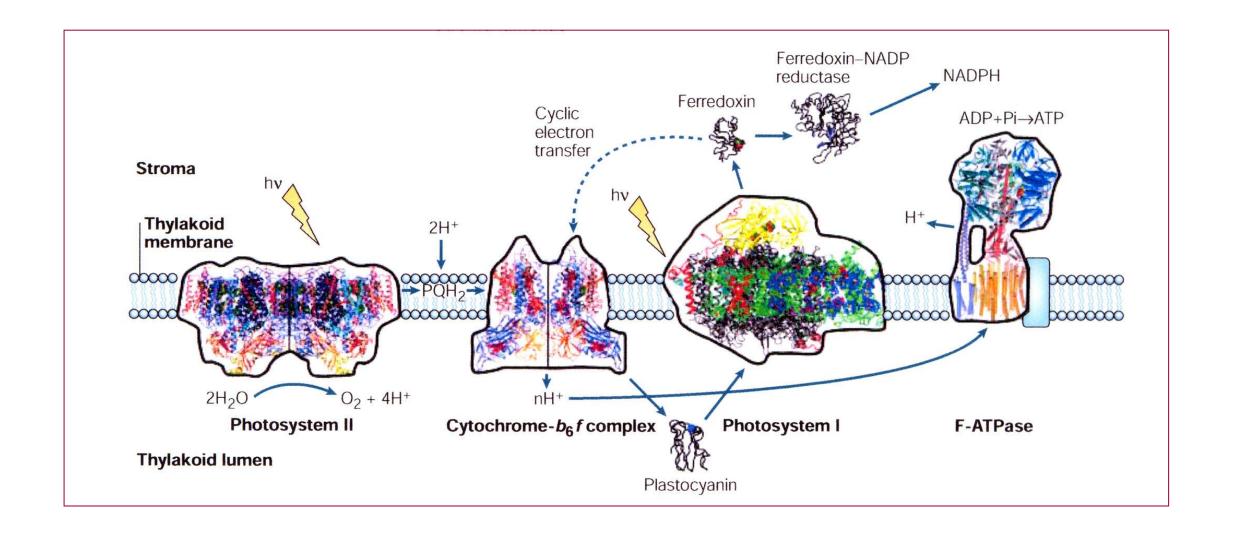
$$12H_{2}O$$
 + энергия света - $12H_{2}$ + $6O_{2}$ + энергия АТФ


• и этап превращения веществ (темновой процесс в строме тилакоидах)


$$6CO_2 + 12H_2 +$$
 энергия АТФ - $C_6H_{12}O_6 + 6H_2O$

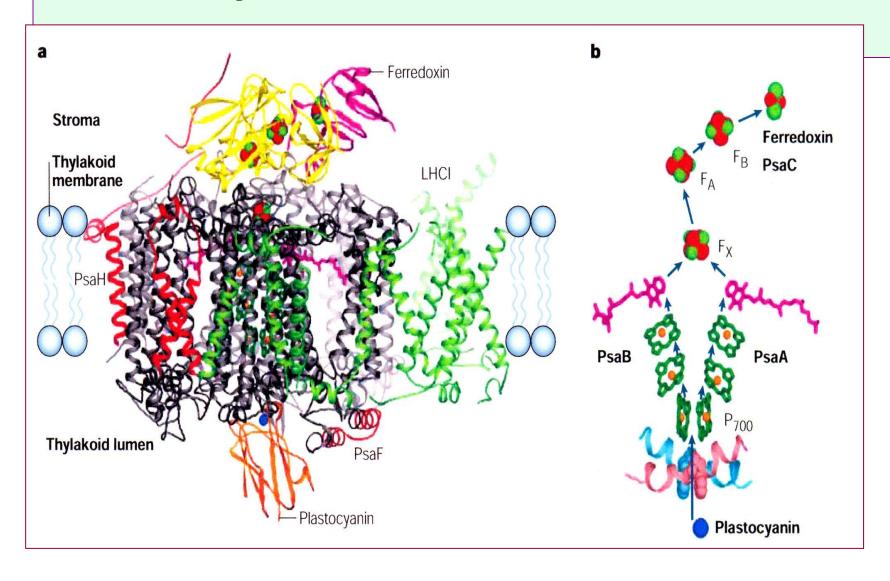
Пигменты растений, участвующие в фотосинтезе, «упакованы» в тилакоиды хлоропластов в виде функциональных фотосинтетических единиц, называемых фотосистемами.

Два типа фотосистем — I и II. Каждая фотосистема содержит 250-400 молекул пигментов.


Организация фотосинтетического аппарата

Тилакоиды образовались по-видимому, за счет инвагинации внутренней мембраны с последующим «отшнуровы-ванием». Таким образом, люмен топологически эквивалентен межмембран-ному пространству.

Организация фотосинтетического аппарата, «реальная картинка».

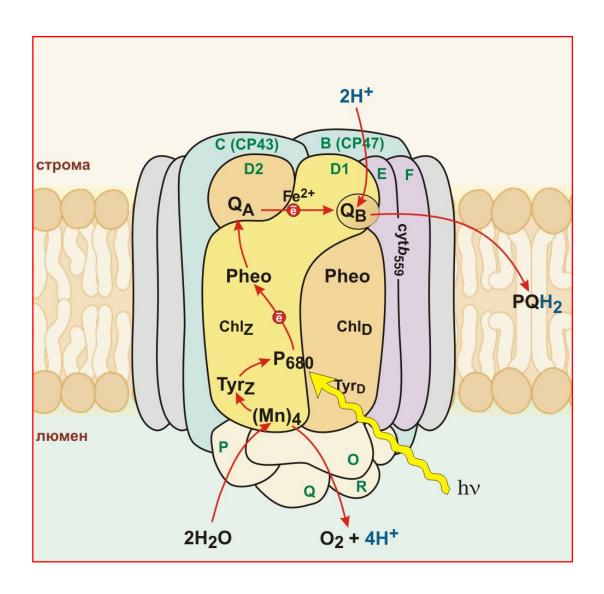


Все пигменты фотосистемы могут поглощать частицы световой энергии, называемые фотонами или квантами света, но только одна молекула хлорофилла данной фотосистемы может использовать поглощенную энергию в фотохимических реакциях. Эта молекула называется реакционным центром фотосистемы, а другие молекулы пигментов называются антенными, поскольку они улавливают энергию света, подобно антеннам, для последующей передачи реакционному центру.

ФСΙ

В ФС I реакционный центр образован особой молекулой хлорофилла a, обозначаемой как P_{700} , где 700 — оптимум поглощения в нм. Реакционный центр фотосистемы II также образован молекулой хлорофилла a и обозначается индексом P_{680} , поскольку оптимум поглощения лежит в районе 680 нм. Фотосистемы I и II работают обычно синхронно и непрерывно, но фотосистема I может функционировать отдельно.

Фотосистема I в «реальном виде»



Все молекулы пигментов в фотосистемах способны улавливать энергию солнечного света. В случае антенных пигментов свет, поглощенный молекулами, поднимает их электроны на более высокий энергетический уровень, в конечном итоге высокоэнергетические электроны достигают реакционного центра.

ФСІІ

В случае ФС II энергия света утилизируется реакционным центром P_{680} . Возбужденные энергизированные электроны центра P_{680} парами переносятся на молекулу соединения, очевидно, относящегося к классу хи*нонов* (один из представителей фенольных соединений) и называемого акцептором. От акцептора начинается электронный поток, в котором электроны спускаются по электронотранспортной цепи к фотосистеме I. Компонентами этой цепи являются цитохромы — белки, содержащие железо и серу, хиноны и белок пластоцианин, содержащий медь.

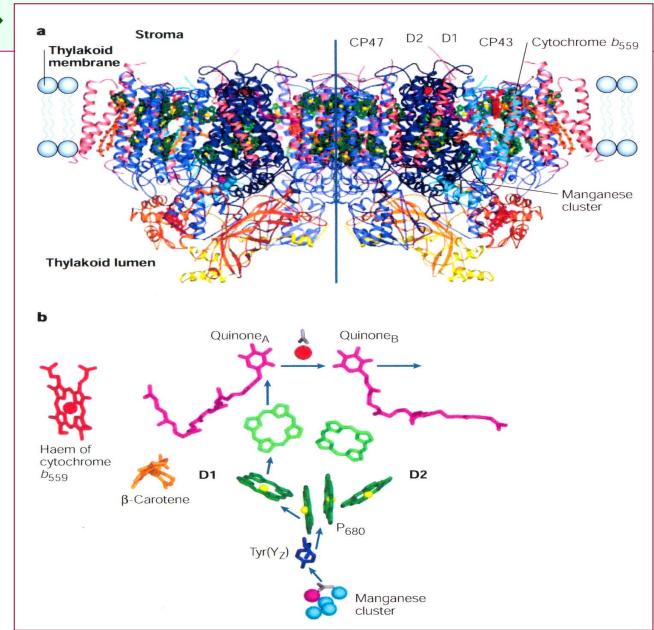
Фотосистема II: схема реакционного центра (РЦ)

25 белков:

D₁ + **D**₂ – Гетеродимер, на нем: **P**₆₈₀ – димер Chla, **Pheo** – феофитин,

 $Chl_{z,D}$ — дополнительные Chl,

Q_A – пластохинон связанный,


Q_в – сайт связывания пластохинона из мембранного пула

 \mathbf{F} , \mathbf{E} – cyt \mathbf{b}_{559}

O, P, Q – формируют водоокисляющий комплекс

С (СР43), В (СР47) – внутренние фокусирующие антенны (~ 30 Chla)

Фотосистема II в «реальном виде»

Электронотранспортная цепь между фотосистемами І и ІІ устроена так, что АТФ может образовываться из АДФ и Ф, причем этот процесс аналогичен окислительному фосфорилированию, происходящему в митохондриях. В хлоропластах он связан с энергией света и поэтому получил название фотофосфорилирования.

Молекула Р₆₈₀, потерявшая свои электроны (в момент потери происходит флюоресценция), заменяет электронами донора. В аэробном фотосинтезе является вода. Когда электроны молекулы воды поступают к Р₆₈₀, молекула диссоциирует на протоны и кислород. Это окйслительное расщепление молекул воды осуществляется под влиянием энергии солнечного света (светозависимая диссоциация) и под названием *фотолиза.* Ферменты, известно ответственные за фотолиз воды, располагаются на внутренней стороне мембраны тилакоидов. Фотолиз воды участвует в создании градиента протонов через мембрану, где высокая концентрация протонов оказывается во внутреннем пространстве тилакоидов. Протонный градиент способствует синтезу АТФ из АДФ и фосфата в ходе фотофосфорилирования.

В ФС I энергия света, «уловленная» антенными пигментами фотосистемы, поступает в реакционный центр P_{700} . От P_{700} электроны передаются на электронный акцептор P_{430} , который, вероятно, представляет белок, содержащий железо и серу. Р₄₃₀ передает свои электроны на другой железосеросодержащий белок — ферредоксин, а последний - на кофермент НАД, который восстанавливается до НАД • Н₂. Молекула Р₇₀₀ в ходе процесса окисляется, но затем восстанавливает потерянные электроны за счет электронов, поступающих по электронотранспортнои цепи от ФС II. Таким образом, на свету электроны перемещаются от воды к ФС II и I, а затем к НАД. Этот однонаправленный поток называется нециклическим потоком электронов, а образование АТФ, которое при этом происходит, — нециклическим фотофосфорилированием. Общий энергетический выход нециклического потока электронов (идет 12 пар электронов от H_2 О до НАД) составляет 12АТФ и 12НАД H_2 .

ФС I может работать независимо от фотосистемы II. Этот процесс называют циклическим потоком электронов. В ходе процесса не происходит фотолиза воды, выделения О₂ и образования НАД • Н₂, однако образуется АТФ. Поскольку в описываемом случае синтез АТФ связан с циклическим потоком электронов, его называют *циклическим* фотофосфорилированием.

У эукариотических клеток циклическое фотофосфорилирование осуществляется достаточно редко, в тех случаях, когда клетка с избытком снабжается восстановителем в форме НАД • Н₂ извне, из других клеток или из других компартментов клетки. Подобная схема лежит в основе процессов анаэробного фотосинтеза у фотосинтезирующих бактерии, но, разумеется, с участием иных пигментов (бактериохлорофиллов или хлоробиумхлорофиллов).

Кальвина).

 $6CO_2 + 12H_2 +$ энергия $AT\Phi - C_6H_{12}O_6 + 6H_2O$

второй (Тененновой проднасс) фотосинтеза химическая энергия (в виде АТФ), запасенная в ходе световой реакции, используется для восстановления углерода. Углерод доступен для фотосинтезирующих клеток в виде диоксида углерода, при чем водоросли, багрянки и оксифотобактерии усваивают СО, растворенный в воде. У растений диоксид углерода поступает к фотосинтезирующим клеткам через устьица. Восстановление углерода происходит у эукариот в строме хлоропластов в цикле реакций, известных как цикл Кальвина (по имени американского биохимикам. Кальвина, Нобелевская премия 1961 г. за **ELO OTKUPITNE)**

Восстановление СО, до уровня углеводов может происходить в темноте. Этот цикл состоит из трех этапов:

1 этап -карбоксилирование.

На этой стадии происходит присоединение СО к РДФ (5углеродный сахар рибулозодифосфат) и образование двух молекул фосфоглицериновой кислоты. Эта реакция катализируется ферментом РДФ-карбоксилазой.

- 2 этап восстановление. Этот этап идет в двух фазах:
- а) под действием фермента фосфоглицераткиназы к 3-ФГК присоединяется еще 1 фосфатная группа от молекулы АТФ и образуется 1,3 дифосфоглицериновая кислота (1,3 ФГК).
- б) происходит восстановление 1,3-ФГК в 3 фосфоглицериновый альдегид (ФГА), коферментом которой служит НАДФ. Из образовавшихся 6 молекул ФГА 5 идут на регенерацию акцептора рибулезодифосфата, а 1 молекула выходит из цикла.

3 этап - регенерация.

Эта фаза происходит с участием трех-, четырех-, пяти-, шести- и семиуглеродных сахаров.

В результате процессов альдольной конденсации, катализируемых соответствующими альдолазами, и транскетолазных реакций из 5 молекул 3-ФГА образуются 3 молекулы 5-углеродных сахаров, которые превращаются в РДФ. Из оставшейся неиспользованной шестой молекулы 3-ФГА под действием альдолазы синтезируется молекула фруктозо-1,6-дифосфата, из которой могут образовываться глюкоза, сахароза или крахмал.

Таким образом, для синтеза одной молекулы глюкозы в цикле Кальвина необходимы 12 молекул НАДФ Н₂ и 18 АТФ. Цикл Кальвина функционирует у высших растений, водорослей, у большинства фототрофных и хемотрофных бактерий.

У некоторых растений первый продукт фиксации CO_2 — не трехуглеродная молекула 3-глицерофосфата, а четырехуглеродное соединение — оксалоацетат. Такой путь фотосинтеза получил название C_4 -пути. Оксалоацетат затем быстро превращается либо в малат, либо в аспартат, которые переносят CO_3 к РБФ цикла Кальвина.

Существует особая анатомическая структура в мезофилле листа (кранцструктура), сопряженная с С₄-путем фотосинтеза. У С₄-растений начальные этапы фотосинтеза осуществляются по преимуществу в клетках обкладок проводящих пучков, а C_3 -путь (цикл Кальвина) — в клетках мезофилла. Иначе говоря, C_4 -растения используют оба пути фотосинтеза, но они в пределах одного растения пространственно разделены. С $_4$ -растения более экономно утилизируют СО $_2$, чем С $_3$ -растения. С $_4$ -растения обладают способностью поглощать СО $_2$ с минимальной потерей воды. Кроме того, у С $_4$ -растений практически отсутствует фотодыхание — процесс выделения СО $_2$ и поглощения О $_2$ на свету.

С₁-растения известны среди 19 семейств цветковых (из них 3 — однодольные и 16 — двудольные), и, очевидно, этот фотосинтеза возник независимо в разных филетических линиях. Однако практически все С,растения адаптированы к высокой инсоляции, повышенным температурам и засухе. Оптимальная температура для роста и развития таких растений выше, чем у C_3 -растений; C_4 -растения процветают даже при температурах, которые губительны для многих С₃-видов.

САМ-тип метаболизма.

Помимо С₃- и С₄-путей, известен еще так называемый метаболизм органических кислот по типу толстянковых. Растения, фотосинтезирующие по САМ-типу, могут фиксировать СО₅ в темноте с помощью фермента фосфоенолпируваткарбоксилазы, образуя яблочную кислоту, которая запасается в вакуолях. В течение последующего светового периода яблочная кислота декарбоксилируется и СО₅ присоединяется к РБФ цикла Кальвина в пределах той же клетки. Иначе говоря, САМ-растения также используют оба пути фотосинтеза, но они разделены в пределах используют оба пути фотосинтеза, но они разделены в пределах одно го растения во времени. САМ-метаболизм обнаружен у многих суккулентных пустынных растений, у которых устьица открыты в ночное время и закрыты днем. САМ-растения, как правило, хорошо адаптированы к засухе, но особенности их метаболизма снижают способность к ассимиляции СО₂. Поэтому многие САМ-растения (например, кактусы) растут медленно и вне экстремальных условий слабо конкурируют с С₃- и С₄ растениями.

Завершается фотосинтез накоплением энергетически богатых запасных веществ, составляющих основу для поддержания жизнедеятельности клетки, а в итоге — всего многоклеточного организма. Эти вещества являются продуктами первичного метаболизма.

Влияние внешних условий на интенсивность фотосинтеза

Свет. Источником энергии для фотосинтеза является свет, и поэтому с возрастанием его интенсивности возрастает интенсивность фотосинтеза. Однако прямой зависимости между этими величинами нет. При продолжающемся увеличении интенсивности света интенсивность фотосинтеза будет возрастать на все меньшую величину.

По отношению к интенсивности света все растения можно разделить на две группы:

световые (светолюбивые) — интенсивность фотосинтеза у них возрастает до тех пор, пока интенсивность света не сравняется с интенсивностью полного солнечного освещения; произрастают обычно на открытых местах; даже небольшое затемнение вызывает у них задержку роста и подавляет способность к цветению (лиственница, береза, щирица и др.);

теневые (тенелюбивые) — интенсивность фотосинтеза у них возрастает лишь до интенсивности света, равной примерно 1/10 интенсивности полного освещения, при выращивании на открытом месте имеют угнетенный вид (бук, дубровик и др.).Эти группы связаны между собой переходными формами — выносливыми растениями.

Углекислый газ.

Количество CO_2 в атмосфере, равное 0,03 %, не является оптимальным для растений. Опыты показали, что повышение содержания его в воздухе приводит к повышению интенсивности фотосинтеза. Кривая зависимости между этими величинами имеет такую же форму, как и кривая зависимости интенсивности фотосинтеза от света. Нижний предел содержания СО, в воздухе, ниже которого наступает депрессия фотосинтеза, равен примерно 0,01 %, верхний предел, выше которого также обнаруживается депрессия, равен примерно 1 %. Более половины всего потребляемого растениями СО, образуется в результате разложения органических веществ почвы микроорганизмами. Быстрое развитие растений в набитых навозом парниках объясняется

не только высокой температурой но и обильным снабжением CO_2 . Повышение содержания CO_2 в теплицах до 0,04 — 0,05 % приводит

Температура. В пределах от 0° С до 35 °С интенсивность фотосинтеза подчиняется правилу Вант-Гоффа: при повышении температуры на 10 °С она возрастает в 2—3 раза. При дальнейшем повышении снижается и при 40°—50 °С прекращается. На температурной кривой мы находим три основные точки: *минимум*, с которого процесс начинается; *оптимум*, при котором он идет с наибольшей скоростью; *максимум*, выше которого процесс останавливается. Каждый вид растений имеет свои значения этих величин.

Вода. Нарушение водообмена, которое ведет к уменьшению содержания воды в фотосинтезирующих тканях, сопровождается депрессией фотосинтеза. Степень депрессии зависит от засухоустойчивости растения, фазы роста, уровня обезвоживания и многих других условий. Поэтому благоприятным для фотосинтеза является незначительный дефицит воды.