
Нуклеиновые кислоты. АТФ и другие органические соединения клетки

Нуклеиновые кислоты ДНК. РНК

Фридрих Мишер (1844 – 1895)

Нуклеиновые кислоты были открыты в 1869 году швейцарским биохимиком Фридрихом Мишером.

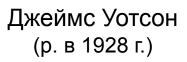
Нуклеиновые кислоты –

полимеры, мономером которых является нуклеотид.

Строение нуклеотида:

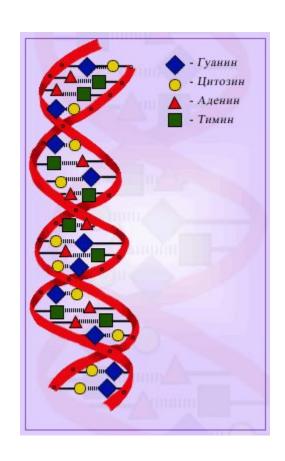
- Остаток моносахарида пентозы рибозы или дезоксирибозы.
- Остаток фосфорной кислоты.
- Остаток одного из азотистых оснований:
 - аденин (A);
 - □ гуанин (Г);
 - □ цитозин (Ц);
 - тимин (Т);
 - □ урацил (У).

ДНК —


дезоксирибонуклеиновая кислота.

Строение нуклеотида ДНК:

- Остаток моносахарида дезоксирибозы.
- Остаток фосфорной кислоты.
- Остаток одного из азотистых оснований:
 - аденин (A);
 - □ тимин (Т);
 - □ гуанин (Г);
 - □ цитозин (Ц).



Френсис Крик (р. в 1916 г.)

Модель строения ДНК была создана американским биологом Дж. Уотсоном и английским физиком Ф. Криком в 1953 году.

ДНК представляет собой

две спирали, соединенные друг с другом водородными связями между азотистыми основаниями по принципу комплементарности.

Принцип комплементарности –

способность азотистых оснований образовывать водородные связи.

Аденин комплементарен тимину –

между аденином и тимином образуются две водородные связи.

Гуанин комплементарен цитозину –

между гуанином и цитозином образуются три водородные связи.

Образование ДНК – репликация (редупликация):

- двойная спираль постепенно раскручивается;
- на каждой спирали по принципу комплементарности надстраивается вторая цепь;
- образуются две одинаковые двойные спирали.

Образование ДНК – репликация (редупликация):

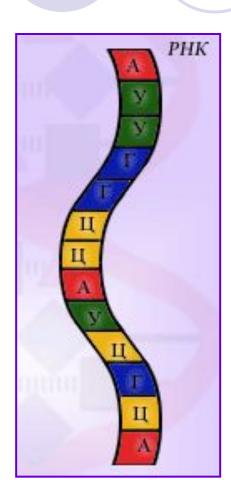
Значение ДНК:

 Хранит наследственную информацию в виде строго определенного чередования нуклеотидов.

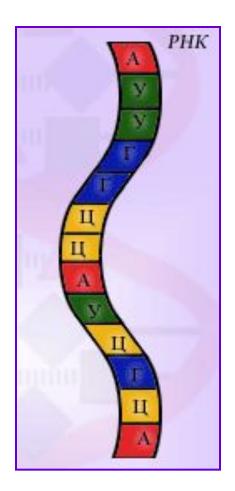
Ген — участок ДНК, кодирующий информацию о первичной структуре одного белка.

РНК —

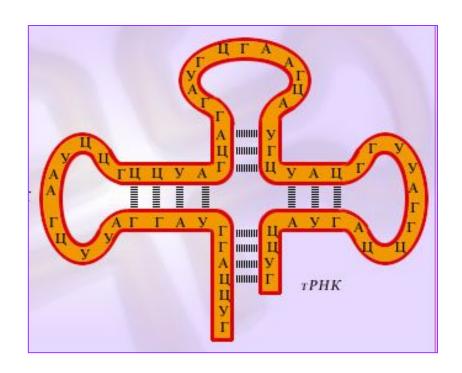
рибонуклеиновая кислота.

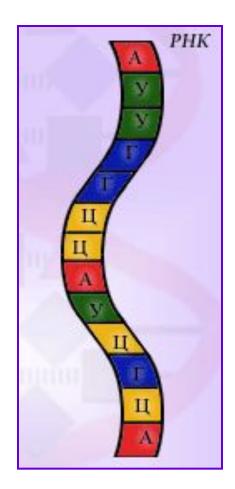

Строение нуклеотида РНК:

- Остаток моносахарида рибозы.
- Остаток фосфорной кислоты.
- Остаток одного из азотистых оснований:
 - аденин (A);
 - урацил (У);
 - □ гуанин (Г);
 - □ цитозин (Ц).

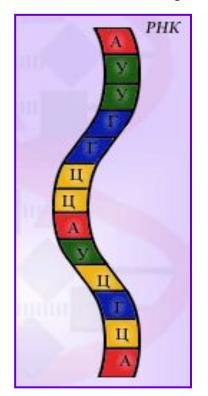

РНК представляет собой

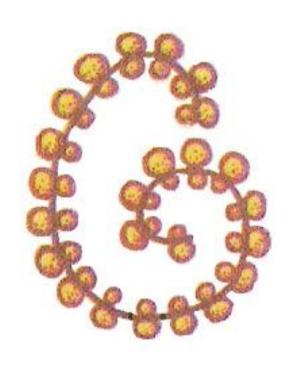
одну спираль.



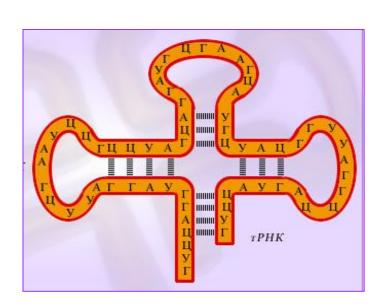

Виды РНК:

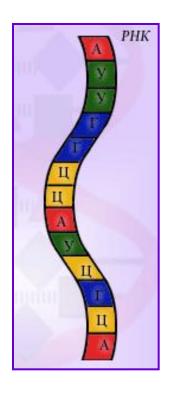
тРНК – транспортная РНК


Виды РНК:

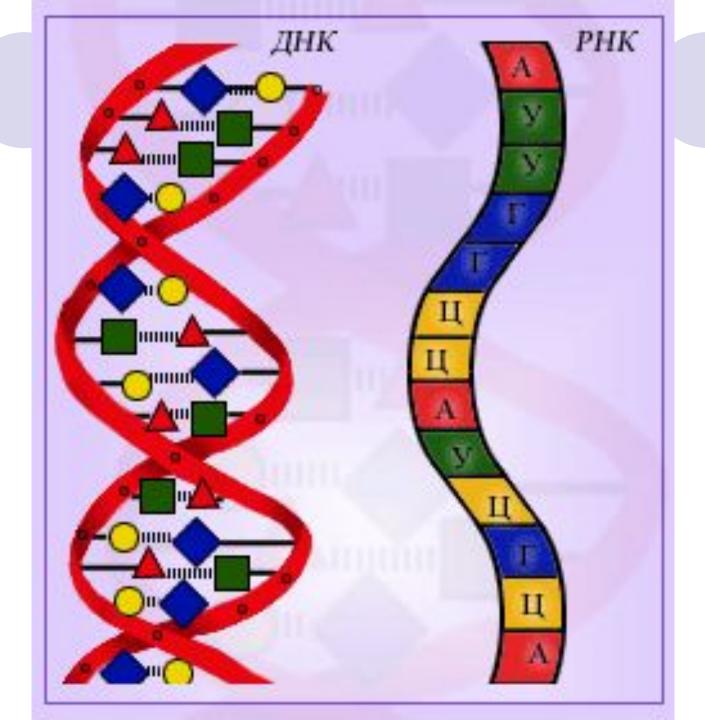


Значение РНК:


 иРНК считывает информацию с участка ДНК о первичной структуре белка и несет эту информацию к месту синтеза белка (к рибосомам).


Значение РНК:

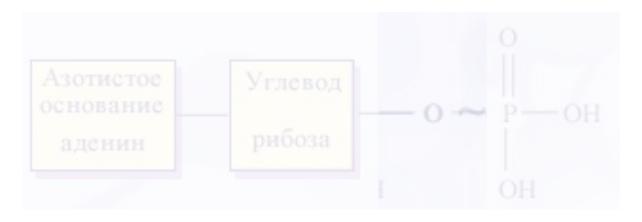
 тРНК переносит аминокислоты к месту синтеза белка (к рибосомам).


Значение РНК:

□ рРНК выполняет строительную функцию – входит в состав рибосом.

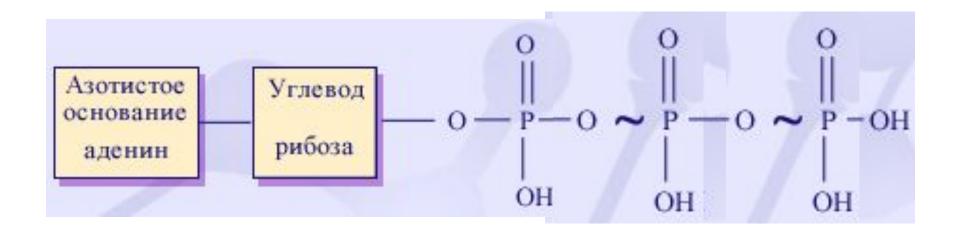
Сравнение ДНК РНК

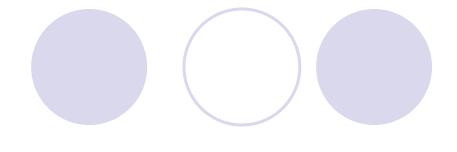
Сравнение ДНК и РНК


Признак	ДНК	РНК
Количество спиралей	Две	Одна
Строение нуклеотида	✓ Моносахарид – дезоксирибоза.	✓ Моносахарид – рибоза.
	✓ Остаток фосфорной кислоты.✓ Азотистые основания: А, Г, Ц, и Т.	✓ Остаток фосфорной кислоты.✓ Азотистые основания: А, Г, Ц, и У.
Способ образования	Репликация (удвоение по принципу комплементарности).	Матричный синтез на одной цепи ДНК по принципу комплементарности.

Аденозинтрифосфор ная кислота

Образование АТФ


 Исходным веществом для образования АТФ является адениловый нуклеотид РНК.


АМФ

Образование АТФ

$$AM\Phi + \Phi = AД\Phi - Q$$

 $AД\Phi + \Phi = AT\Phi - Q$

Строение АТФ

Макроэргические связи

Функция АТФ

 Является хранителем энергии в клетке. При разрушении макроэргических связей выделяется большое количество энергии.

$$AT\Phi \longrightarrow AД\Phi + \Phi + Q$$

 $AД\Phi \longrightarrow AM\Phi + \Phi + Q$