Вода

Вопросы:

- 1. Значение воды для пищевых продуктов
- 2. Физические и химические свойства воды и льда
- 3. Свободная и связанная влага в пищевых продуктах
- 4. Активность воды и стабильность пищевых продуктов
- 5. Роль льда в обеспечении стабильности пищевых продуктов

1. Значение воды для пищевых

- как стабилизатор температуры тела,
- переносчик нутриентов (питательных веществ) и пищеварительных отходов, реагент и реакционная среда в ряде химических превращений,
- стабилизатор конформации биополимеров
- важная составляющая пищевых продуктов
- она присутствует в разнообразных растительных и животных продуктах как клеточный и внеклеточный компонент, как диспергирующая среда и растворитель, обусловливая их консистенцию и структуру и влияя на внешний вид, вкус и устойчивость продукта при хранении. Благодаря физическому взаимодействию с белками, полисахаридами, липидами и солями, вода вносит значительный вклад в текстуру пищи.

Свободная вода в пищевых продуктах выполняет роль:

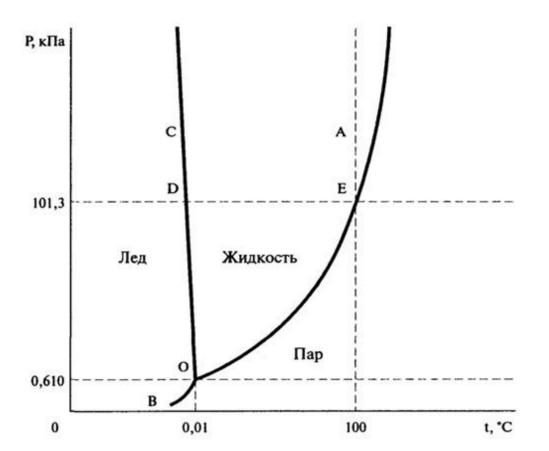
клеточного компонента внеклеточного компонента растворителя все ответы верны

Содержание влаги (%) в пищевых продуктах

Мясо	65-75	Мука	12-14
Молоко	87	Кофе-зерна (обжаренный)	5
Фрукты, овощи	70-95	Сухое молоко	4
Хлеб	35	Пиво, соки	87-90
Мед	20	Джем	28
Масло, маргарин	16-18		

2. Физические и химические свойства воды и льда

Влияние температуры на некоторые свойства воды и


ЛЬДа Показатели	Вода при температуре, °С		Лед при температуре, °С	
Показатели	20	0	0	-20
Плотность, Γ /см 3	0,9982	0,9998	0,9168	0,9193
Давление водяного пара, Па (мм. рт. cт.)	2337 (17,53)	610,4 (4,58)	610,4 (4,580)	103,4 (0,77)
Вязкость, Па · с	$1,002 \cdot 10^{-3}$	$1,787 \cdot 10^{-3}$	-	-
Поверхностное натяжение, Н/мм	$72,75 \cdot 10^{-3}$	$75,6 \cdot 10^{-3}$	-	-
Теплоемкость, Дж/кг · К	4,22	4,18	2,10	1,95
Теплопроводность, Дж/м · с · К	$5,98 \cdot 10^2$	5,64 ·10 ²	$22,40 \cdot 10^2$	$24,33 \cdot 10^2$
Температуропроводность, м ² /с	1,4 · 10 ⁻⁵	1,3 · 10 ⁻⁵	1,1 ·10-4	1,1 ·10-4
Диэлектрическая постоянная	80,36	80,66	91	98

Значения каких показателей физических свойств воды уменьшаются с понижением ее температуры:

плотность + теплоемкость вязкость диэлектрическая постоянная

Диаграмма состояния воды

Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразное и т. д.).

Кривая ОА называется кривой равновесия жидкость — пар или *кривой кипения*. Кривая ОС — кривая равновесия твердое состояние — жидкость, или *кривая плавления* Кривая ОВ — кривая равновесия твердое состояние — пар, или *кривая сублимации*.

Все три кривые пересекаются в точке Отройная точка. Тройная точка отвечает давлению водяного пара 0,610 кПа (4,58 мм рт. ст.) и температуре О,01 С.

Показатели фазовых переходов

Точка при 101,3 кПа (1 атм), °С замерзания (плавления)	0,00	
кипения	100,00	
Тройная точка		
температура, °С	0,0099	
давление, Па (мм рт. ст.)	610,4 (4,579)	
Теплота, кДж/моль (ккал/моль)		
плавления при 0°C	6,01 (1,435)	
парообразования при 100°C	40,63 (9,704)	
сублимации при 0°С	50,91 (12,16)	

Какие параметры давления и температуры характеризуют **тройную точку**:

₊ 101,3 кПа и 0,01С 0,61 кПа и 0,01С 50,2 кПа и 1С 0,61 кПа и 100С

3. Свободная и связанная влага в пищевых продуктах

Связанная влага — это ассоциированная вода, прочно связанная с различными компонентами — белками, липидами и углеводами за счет химических и физических связей.

Свободная влага — это влага, не связанная полимером и доступная для протекания биохимических, химических и микробиологических реакций (вода).

Связанная влага

- характеризует равновесное влагосодержание образца при некоторой температуре и низкой относительной влажности;
- не замерзает при низких температурах (—40°С и ниже);
- не может служить растворителем для добавленных веществ;
- дает полосу в спектрах протонного магнитного резонанса;
- перемещается вместе с макромолекулами при определении скорости седиментации, вязкости, диффузии;
- существует вблизи растворенного вещества и других неводных веществ и имеет свойства, значительно отличающиеся от свойств всей массы воды в системе.

Причины связывания влаги в сложных системах

- Наиболее прочно связанной является так называемая *органически связанная* вода.
- Другой весьма прочно связанной водой является близлежащая влага.

4. Активность воды и стабильность пищевых продуктов

Активность воды (a_w) — это отношение давления паров воды над данным продуктом к давлению паров над чистой водой при той же температуре

$$a_{w} = \frac{p}{p_{0}}$$
 или $a_{w} = \frac{\text{POB}}{100}$,

где Р — парциальное давление; Ро — давление насыщенного водяного пара; РОВ — равновесная относительная влажность.

Активность воды характеризует:

отношение массы свободной влаги к общей влаге

соотношение масс свободной влаги и продукта

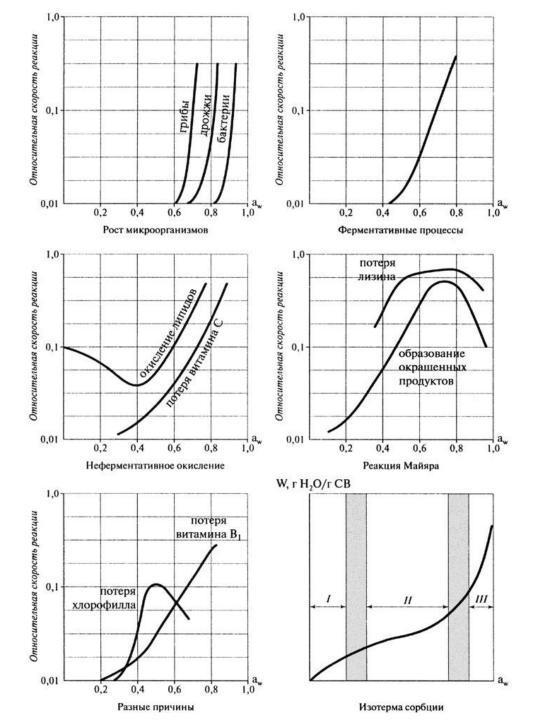
отношение давления паров над чистой водой к + давлению паров над продуктом

отношение давления паров над исследуемым продуктом к давлению паров над чистой водой

По величине активности воды выделяют: продукты с высокой влажностью ($a_w = 1,0-0,9$); продукты с промежуточной влажностью ($a_w = 0,9-0,6$); продукты с низкой влажностью ($a_w = 0,6-0,0$).

К продуктам с промежуточной влажностью относятся:

колбаса вареная (0,970-0,960) яйца (0,970)


+ консервы мясные (0,85) масло сливочное (0,29)

Активность воды (а) в пищевых продуктах

Продукт	Влажность, %	a_{w}	Продукт	Влажность, %	$a_{\rm w}$
Фрукты	90-95	0,97	Мука	16-19	0,80
Яйца	70-80	0,97	Мед	10-15	0,75
Мясо	60-70	0,97	Карамель	7-8	0,65
Сыр	40	0,92-0,96	Печенье	6-9	0,60
Джем	30-35	0,82-0,94	Шоколад	5-7	0,40
Хлеб	40-50	0,95	Caxap	0-0,15	0,10
Кекс	20-28	0,83			

Пищевые продукты с αw = 1,0-0,9 – это:

```
+ фрукты
печенье
шоколад
мед
```


При каких значениях αw в продукте не развивается плесень:

0,95

+ 0,30

0,66

0,85

- Для снижения активности воды используют такие технологические приемы, как сушка, вяление, добавление различных веществ (сахар, соль и др.), замораживание.
- С целью достижения той или иной активности воды в продукте можно применять такие технологические приемы, как:
 - адсорбция продукт высушивают, а затем увлажняют до определенного уровня влажности;
 - сушка посредством осмоса пищевые продукты погружают в растворы, активность воды в которых меньше активности воды пищевых продуктов.

Часто для этого используют растворы сахаров или соли.

- добавляют увлажнители- крахмал, пектины

Приемы, снижающие величину αw в продукте:

введение хлористого натрия вяление

+ все ответы верны замораживание

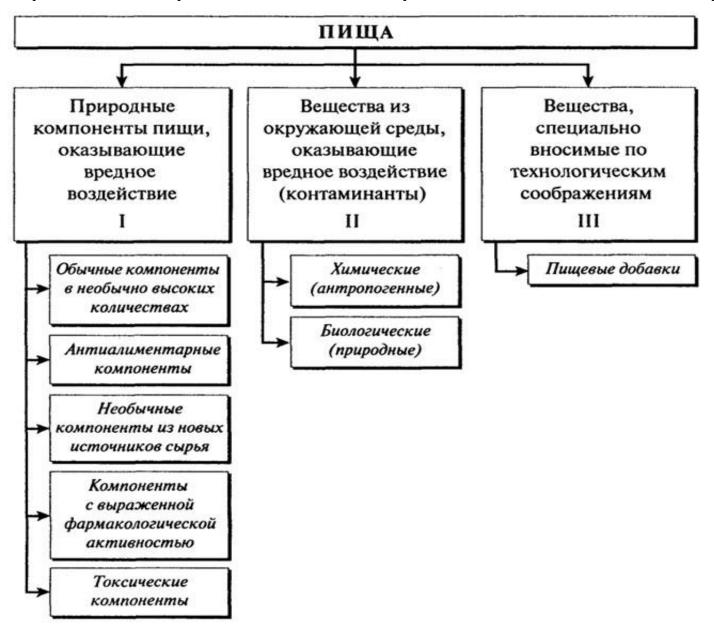
РОЛЬ ЛЬДА В ОБЕСПЕЧЕНИИ СТАБИЛЬНОСТИ ПИЩЕВЫХ ПРОДУКТОВ

При замораживании продукта происходит:

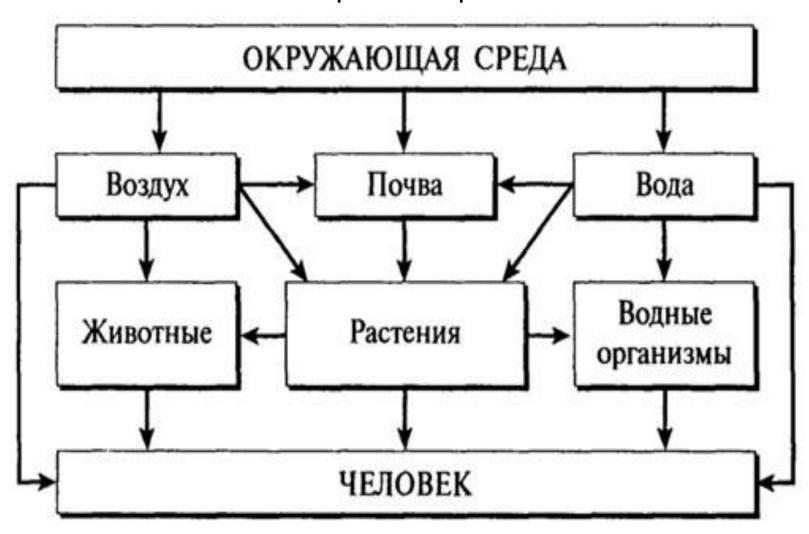
- увеличение в объеме воды на 9%
- неводные компоненты концентрируются в незамерзающей фазе замораживание име

замораживание имеет два противоположных влияния на скорость реакций:

низкая температура как таковая будет ее уменьшать,


а концентрирование компонентов в незамерзшей воде — иногда увеличивать

Безопасность пищевых



Под безопасностью продуктов питания следует понимать отсутствие опасности для здоровья человека при их употреблении, как с точки зрения острого негативного воздействия (пищевые отравления и пищевые инфекции), так и с точки зрения опасности отдаленных последствий (канцерогенное, мутагенное и тератогенное действие). Иными словами, безопасными можно считать продукты питания, не оказывающие вредного, неблагоприятного воздействия на adanaara riaamaguraaa ri Evdyriiniy

Классификация вредных и посторонних веществ в сырье

Схема поступления ксенобиотиков из окружающей среды в организм человека по пищевым цепям

На основе токсикологических критериев (с точки зрения гигиены питания) международными организациями ООН - ВОЗ, ФАО и др., а также органами здравоохранения отдельных государств приняты следующие базисные (основные) показатели: ПДК, ДСД и ДСП

Предельно допустимые концентрации рассматриваются как:

нормы содержаний различных веществ в окружающей среде

нормы содержаний различных веществ в + окружающей среде и пищевых продуктах, не влияющих на организм человека в течении длительного времени

предельно допустимый выброс загрязняющих веществ отдельным источником за единицу времени

максимально допустимые уровни веществ в окружающей среде

Основные нормативные документы, регламентирующие содержание загрязнителей сельскохозяйственной продукции:

- СанПиН. Санитарные правила и нормы (ПДК, МДУ);
- II. FOCT;
- III. XACCII.

Какой нормативный документ регламентирует содержание ПДК веществ в пищевых продуктах:

методические указания технические условия ГОСТ + САНПИН

К прямым критериям безопасности пищевых продуктов не относится:

ПДК МДУ + ГОСТ ДСД

Токсичные элементы

Токсичные элементы (в частности, некоторые **тяжелые металлы**) составляют обширную и весьма опасную в токсикологическом отношении группу веществ. Обычно рассматривают 14 элементов: Hg, Pb, Cd, As, Sb, Sn, Zn, Al, Be, Fe, Cu, Ba, Cr, Tl.

Тяжелые металлы это: натрий, хлор, медь, никель, фтор натрий, аллюминий, хлор

+ железо, ртуть, водород, сера кадмий, ртуть, таллий, свинец, мышьяк

ПРОИСХОЖДЕНИЕ ЕСТЕСТВЕННЫХ РАДИОНУКЛИДОВ

Космическое излучение приводит к возникновению космогенных радионуклидов:

Земные (первичные радионуклиды):

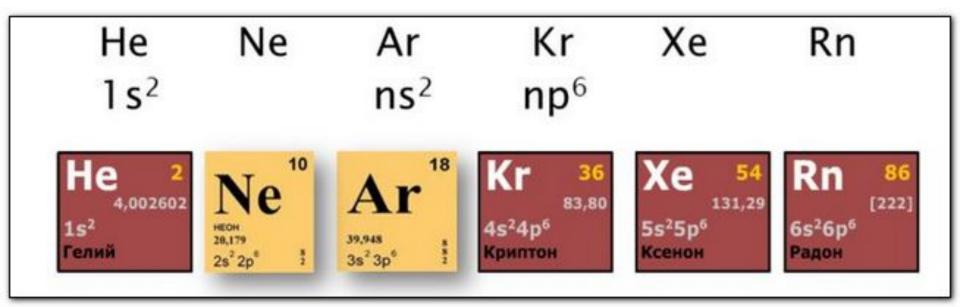
Уран-238

C-14

H-3

Be-7

Na-22


Торий-232

Уран-235

Калий-40

Радий-226

Инертные газы

Диоксины являются побочными продуктами производства пластмасс, пестицидов, бумаги, дефолиантов.

Полициклические ароматические

Загрязнения веществами, применяемыми в растениеводстве

Пестициды - вещества различной химической природы, применяемые в сельском хозяйстве для защиты культурных растений от сорняков, вредителей и болезней, т. е. химические средства защиты растений.

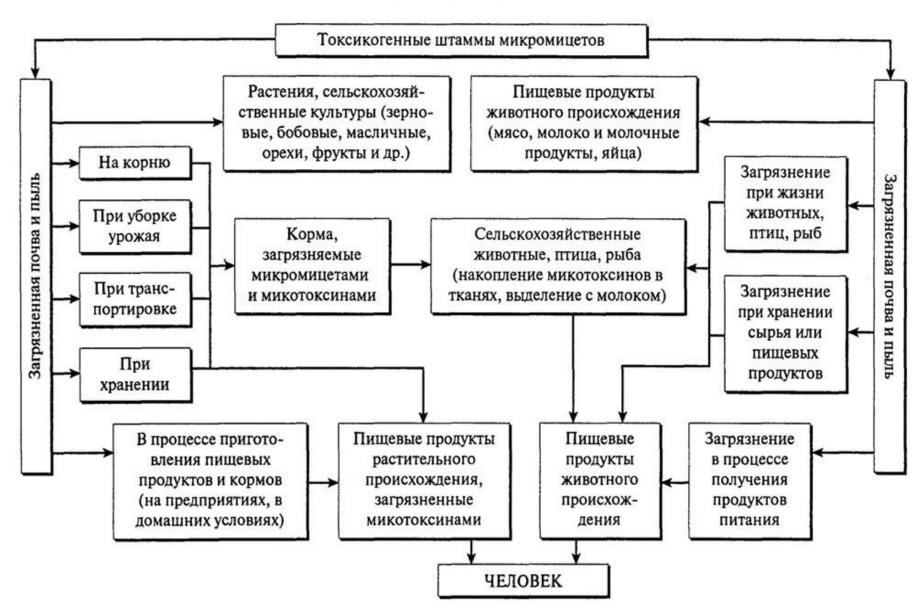
Нитраты

Регуляторы роста растений (РРР) - это соединения различной химической природы, оказывающие влияние на процессы роста и развития растений и применяемые в сельском хозяйстве с целью увеличения урожайности, улучшения качества растениеводческой продукции, облегчения уборки урожая, а в некоторых случаях для увеличения сроков хранения растительных

К основным загрязнителям применяемым в растениеводстве не относят:

пестициды
₊ нитраты
антибиотики
регуляторы роста растений

Загрязнение веществами, применяемыми в животноводстве


Антибиотики. Встречающиеся в пищевых продуктах антибиотики могут иметь следующее происхождение:

- 1) естественные антибиотики;
- 2) образующиеся в результате производства пищевых продуктов;
- 3) попадающие в пищевые продукты в результате лечебно-ветеринарных мероприятий;
- 4) попадающие в пищевые продукты при использовании их в качестве биостимуляторов;
- 5) применяемые в качестве консервирующих

Бактериальные токсины

Микотоксины

МИКОТОКСИНЫ

БОЛЕЕ 100

- более 25% производимого в мире зерна подвергается загрязнению микотоксинами (FAO).
- десятки миллиардов американских долларов составляют потери продуктов животноводства развитых стран из-за микотоксинов (CAST).
- более 470 миллионов американских долларов составляют экономические потери, связанные только с одним микотоксином, афлатоксином, в странах Юго-Восточной Азии.
- до 36% всех заболеваний в развивающихся странах прямо или косвенно связаны с микотоксинами.

МИКРОСКОПИЧЕСКИЕ ГРИБЫ, ТОКСИНООБРАЗУЮЩИЕ

- 1000 ШТАММОВ
 - 300 ВИДОВ
- ПРЕДСТАВИТЕЛИ РОДОВ:
 - ASPERGILLUS
 - PENICILLIUM
 - - FUSARIUM

БИОКАТАСТРОФА

вспышка микотоксикоза (Claviceps purpurea) Эфиопия,1978

Трихотеценовые микотоксины: Т-2 токсин, НТ-2 токсин, Дезоксиниваленол, Ниваленол

Макроциклические (сатратоксины, веррукарины, роридины)

Основные продуценты	F.sporotrichioides, F.poae F.graminearum, F.culmorum F.nivale Stachybotrys spp Myrothecium spp Phomopsis spp
Природные субстраты	Пшеница, ячмень, рожь, овес, кукуруза Сено, солома
Характер токсического действия	Нейротоксическое, геморрагичес- кое, лейкопеническое, дермато- токсическое, иммунодепрссивное

Обеспечение безопасности пищи

Оценка риска контаминации пищевых продуктов

Методы идентификации и количественного обнаружения загрязнителей пищевых продуктов

Мониторинг за загрязнением пищевых продуктов и продовольств енного сырья Подготовка специалистов, образование населения

Федеральный уровень

Региональный уровень

Разработано более 7000 гигиенических регламентов безопасности пищевой продукции

Показатели	Количество нормативов
Санитарно-химические показатели	1024
Санитарно-микробиологические показатели	1432
Пестициды	2890
Пищевые добавки	797
Вещества, выделяющиеся из материалов, контактирующих с пищевыми продуктами	917

Разработано более 140 методических документов

Вид контаминантов	Количество методических документов	
	ГОСТ	МУК, утвержденные Роспотребнадзором
Токсичные элементы	6	22
Пестициды	3	32
Полихлорированные бифенилы	-	1
Нитраты	1	2
N-нитрозамины	-	1
Полициклические ароматические углеводороды	1	1
Цетилпиридиний хлорид	-	1
Микотоксины	6	7
Пищевые добавки	7	2
Микробиологические методы анализа	28	23

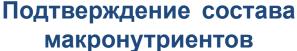
МЕТОДИЧЕСКАЯ БАЗА В СИСТЕМЕ САНЭПИДНАДЗОРА


1 УРОВЕНЬ

ионометрия, качественные реакции, ТСХ, иммунные методы (ИФА, тест-полоски) ГЖХ, ВЭЖХ, ААС, АЭС, СФМ, ИК, электрофорез

2 УРОВЕНЬ

масс-спектрометрия, ПЦР анализ, изотопный состав



Все нормируемые показатели безопасности и качества пищевых

продуктов имеют адекватный метод анализа

МЕТОДИЧЕСКАЯ БАЗА В СИСТЕМЕ САНЭПИДНАДЗОРА

Подтверждение подлинности

Подтверждение состава микронутриентов и БАВ

Оценка безопасности пищевых продуктов

Подтверждение соответствия гигиеническим требованиям

Токсикологическая оценка новых видов продукции, токсикантов

Методы анализа показателей безопасности – более **300**

показателей качества

- более **600**