Тема Защита населения и территорий в чрезвычайных ситуациях.

Занятие

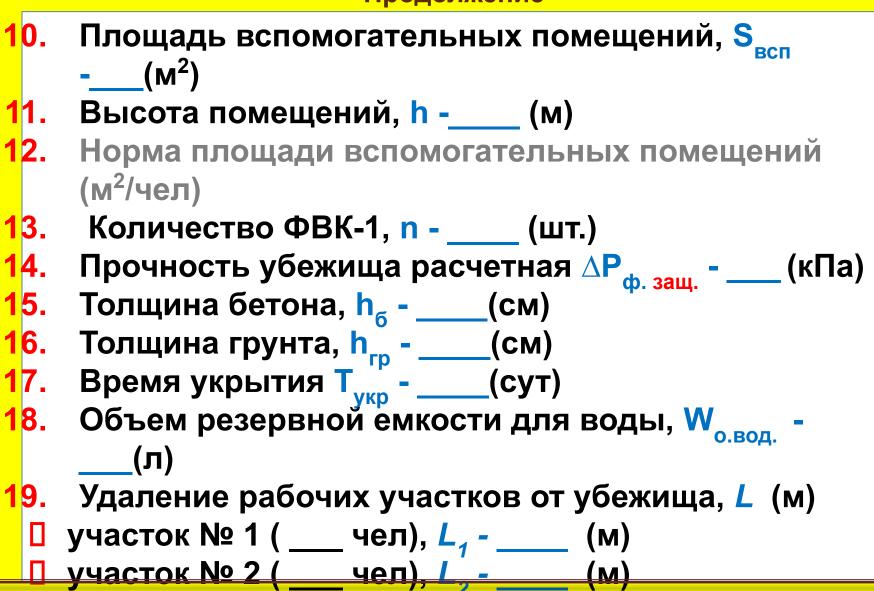
Оценка инженерной защиты рабочих и служащих объекта.

Литература:

1989 C. 185-213

(Д-1987) (C. 170-198).

Исходные данные.


```
Вариант № ____

    Мощность взрыва, q - ____ (кт)

2. Вид взрыва - наземный
3. Удаление объекта от эпицентра взрыва R - (км)
4. Скорость среднего ветра, V<sub>св</sub> - ____(км/ч)
<mark>5</mark>. Доза установленная, Д <sub>уст</sub> ____ (р)
6. Климатическая зона
7. Количество людей в наибольшей работающей
  смене, N - (чел)
8. Убежище - отдельно стоящее в зоне застройки
9. Площадь основного помещения убежища,
```

Исходные данные.

Продолжение

Последовательность выполнения практической работы:

- 1. Оценка защитного сооружения (3C) по вместимости.
- 2. Оценка ЗС по защитным свойствам.
- 3. Оценка систем жизнеобеспечения.
- Оценка ЗС по своевременному укрытию людей.
- 5. Дать рекомендации по повышению защитных свойств убежища

Помещения убежища

- 1. Основные
 - помещения для укрываемых
 - пункты управления
 - □ медицинские пункты
- 2. Вспомогательные
 - ✓ фильтровентиляционные
 - помещения для хранения продовольствия
 - ✓ дизельная электростанция (ДЭС)
 - ✓ электрощитовая
 - ✓ санузлы
 - ✓ баллонная
 - ✓ тамбур-шлюз

1. Оценка защитного сооружения по вместимости

Д.1987, с.189

1.1. Рассчитываем количество мест для укрываемых в зависимости

- □ от имеющейся площади основных помещений (\$_{осн.} n.9 исходных данных, согласно варианта),
- исходя из установленных норм на одного укрываемого человека:
 - $S_1 = 0,5 \text{ м}^2/\text{чел.}$ при наличии в помещении двухъярусных нар (для помещений высотой h до 2,9 м, n.11)
 - $S_1 = 0,4 \text{ м}^2/\text{чел}$ при наличии в помещении трехъярусных нар (для помещений высотой $h \ge \text{до } 2,9 \text{ м, n.11}$)

$$M_{S} = \frac{S_{\text{och}}}{S_{1}}$$

Д.1987, с.189

- **1.2.** Рассчитываем количество мест для укрываемых в зависимости
 - от имеющегося объема (V_o) основных и вспомогательных помещений в зоне герметизации (кроме
 - и помещений ДЭС,
 - ✓ тамбуров
 - и расширительных камер),
 - \square исходя из установленных норм на одного укрываемого человека (V_1 не менее 1,5 м 3 /чел.)

$$M_{V} = \frac{V_{o}}{V_{1}} = \frac{(S_{oCH} + S_{BC\Pi})h}{V_{1}}$$

Д.1987, с.189

1.3. Определяем

показатель, характеризующий защитные сооружения по вместимости (возможность укрытия рабочего персонала), - коэффициент вместимости:

$$K_S = \frac{M_S}{N} \ge 1$$
,

$$K_V = \frac{M_V}{N} \ge 1$$
,

если коэффициенты < 1, то вместимость убежища определяется по меньшему из них, (при этом, вместимость убежища определяем как разность

$$N-M_S$$
 или $N-M_V$

Пример

•

Пусть
$$N=700$$
 чел., $M_S=650$ чел., $M_V=660$ чел.

Tогд a

$$K_S = \frac{M_S}{N} = \frac{650}{700} \approx 0.93$$

$$K_V = \frac{M_V}{N} = \frac{660}{700} \approx 0,94,$$

Следовательно:

- \square вместимость убежища составляет 650 чел. (M_S) и все последующие расчеты мы будем выполнять с учетом (M_S);
- \square количество людей, не вместившихся в убежище составит 50 чел. (N $M_S = 700 650$)

Д.1987, с.189

1.4. Определяем

количество нар,

необходимых для размещения рабочих и служащих •

Количество нар должно быть:

✓ при установке двухъярусных нар (одни нары длиной 180 см обеспечивают 4 места для сидения, одно — для лежания, размещаются 5 человек),

количество нар определяем

✓ при установке трехъярусных нар (4 места пля силения,

2 — для лежания, размещаются **6** че. H = M/**5**

количество нар определяем

H = M/6

По результатам расчетов делается вывод о возможности укрытия рабочих и служащих объекта.

2. Оценка убежищ по защитным свойствам

Д.1987, c.189-190, Пр.1 c. 211-212

2.1. Определяем защитные свойства по ударной волне.

Для надежной защиты укрываемых необходимо выполнение неравенства

$$\Delta P_{\phi_{\bullet} \text{ защ.}} \ge \Delta P_{\phi_{\bullet} \text{ треб.}}$$

где

- ✓ $\Delta P_{\phi_{\bullet} 3ащ_{\bullet}}$ избыточное давление на которое рассчитаны элементы конструкции 3С (берется из характеристики защитного сооружения n_{\bullet} 14 исходных данных, согласно варианта),
- ✓ ΔР треб. треб.
 - $\Delta P_{\phi_{\bullet} \text{ треб.}}$ определяется по приложению 1

Находим максимальное ожидаемое избыточное давление ΔP_{ϕ . треб. на расстоянии R (п.3 исходных

данных)

c.212	世	*		_					aca (CH	<mark>ие1</mark>		98	ä	10
Ungermanne			100		_ •				НЫЙ		nennun	aca w	Daccto			эжен	
Избыточные давления ударі $R_{x} = 1,2 \text{ KM}$ ых мощностях ядерного боеприпаса и расстояниях до центра взрыва Избыточное давление ΔP_{ϕ} , кПа										эрына							
Мощность боеприпаса,	2000	1000	500	250	200	150	100	90	80	70	. 60	50	40	30	20	15	10
кт	Расстояние до центра (эпицентра) взрыва, км																
1	0,05	$\frac{0.07}{0.1}$	$\frac{0,09}{0,13}$	$\frac{0,13}{0,18}$	$\frac{0,15}{0,2}$	$\frac{0,17}{0,23}$	$\frac{0.21}{0.27}$	$\frac{0,23}{0,28}$	$\frac{0,26}{0,3}$	$\frac{0,29}{0,33}$	$\frac{0,32}{0,36}$	$\frac{0.36}{0.4}$	0,45	$\frac{0,54}{0,54}$	0,75	$\frac{0.95}{0.84}$	1,4
2	$\frac{0.07}{0.1}$	$\frac{0,09}{0,13}$	$\frac{0,11}{0,17}$	0,16	$\frac{0,18}{0,25}$	$\frac{0,21}{0,29}$	0,27	0,28	$\frac{0,31}{0,4}$	$\frac{0,34}{0,44}$	0,38	0,45	0,57 0,59	0,68	0,95	$\frac{1,2}{1,05}$	1,75
. 3	0,08	$\frac{0,1}{0,14}$	0,13	$\frac{0,18}{0,26}$	$\frac{0,21}{0,29}$	$\frac{0.24}{0.33}$	0,31	$\frac{0,32}{0,42}$	$\frac{0,36}{0,44}$	0,41	$\frac{0.47}{0.52}$	$\frac{0,52}{0,57}$	$\frac{0,65}{0,68}$	0,78	1,1	$\frac{1,35}{1,2}$	1,6
5	0,09	$\frac{0,12}{0,17}$	$\frac{0,15}{0,23}$	$\frac{0,22}{0,31}$	$\frac{0,25}{0,34}$	$\frac{0,28}{0,29}$	$\frac{0,37}{0,47}$	$\frac{0,41}{0,5}$	$\frac{0.45}{0.54}$	$\frac{0.5}{0.58}$	$\frac{0,55}{0,63}$	0,61	0,17	$\frac{0,92}{0,92}$	$\frac{1,3}{1,2}$	1,6	2,4
10	$\frac{0,11}{0,17}$	$\frac{0.15}{0,22}$	$\frac{0,18}{0,29}$	$\frac{0,27}{0,39}$	$\frac{0,32}{0,43}$	$\frac{0,36}{0,49}$	0,46	$\frac{0.5}{0.64}$	$\frac{0,55}{0,69}$	$\frac{0,61}{0,74}$	$\frac{0,67}{0,8}$	$\frac{0,77}{0,85}$	0,96	1,15	1,6	1,8	3,4
20	0,15	$\frac{0,18}{0,27}$	$\frac{0,24}{0,37}$	0,35 0,49	$\frac{0,4}{0,54}$	$\frac{0,45}{0,62}$	0,6	0,7	0,8	$\frac{0.85}{0.97}$	0,9	1,1	1, <u>l</u>	1,5	1,9	$\frac{2,6}{2,3}$	3,2

2. Оценка убежищ по защитным свойствам

Д.1987, с.189-190, Пр.1 с. 211-212

2.2. Определяем защитные свойства по ионизационному излучению

Для надежной защиты укрываемых необходимо выполнение неравенства

где

- ✓ К осл₃защ₃ коэффициент защиты от ионизационного излучения (коэффициент ослабления радиации сооружением)
- ✓ К осл. РЗ треб. требуемый коэффициент ослабления радиации от радиоактивного заражения

К ослазаща - коэффициент защиты от ионизационного излучения

Защитные свойства от ионизирующего излучения могут быть приведены в характеристике убежища (ПРУ) или найдены расчетным путем. Причем если в районе расположения убежища ожидается действие проникающей радиации, то расчет следует проводить по радиоактивному заражению и по проникающей радиации раздельно, по формуле

$$K_{ ext{ocл.защ}} = K_{ ext{p}} \prod_{i=1}^n 2^{h_i/d_i}$$

```
    ✓ К р - коэффициент, учитывающий условия расположения убежища (определяем по табл. 11.3, с., учитываем п. 8 усл.);
    ✓ п - число защитных слоев материалов перекрытия убежища (2);
    ✓ h 1 - толщина і -го защитного слоя, см (п 2 - толщина бетона п. 15, п 2 - толщина грунта п. 16);
    ✓ d 1 - толщина і -го слоя половинного ослабления, см (п 3 - толщина слоя половинного ослабления грунта п. 16);
    ✓ с излучения радиоактивного заражения для бетона, пр - толщина слоя половинного ослабления грунта п. 16);
    ✓ с излучения радиоактивного заражения для грунта п. 16);
    ✓ с излучения радиоактивного заражения для грунта п. 16);
    ✓ с излучения радиоактивного заражения для грунта
    ✓ с излучения радиоактивного заражения для грунта
    ✓ с излучения радиоактивного заражения для грунта
```

Приложение 11 Толщина слоя половинного ослабления радиации для различных материалов d, см

4:		Толщина слоя, см					
Материал	Плотность п, г/см ³	ү-излучения проникаю- щей радиации	ү-излуче н ия радиоактивного заражения	чейтронов			
Вода	1	23	13	2,7			
Древесина	0,7	33	18,5	9,7			
Грунт	1,6	14,4	8,1	12,0			
Кирпич	1,6	14,4	8,1	9,1			
Бетон -	2,3	. 10	5,7	12,0			
Кладка кирпичная	1,5	15	8,7	10,0			
Кладка бутовая	2,4	9,6	5,4				
Глина утрамбованная	2,06	11	6,3				
Известияк	2,7	8,5	4,8				
Полиэтилен	0,95	24,0	14,0	2,7			
Стеклопластик	1,7	12,0	8,0	4,0			
Лед	0,9	26	14,5	3,0			
Сталь, железо, броня	7,8	3	1,7	11,5			
Свинец	11,3	2	1,2	12			

Примечание. Для других материалов, не помещенных в таблице, слой половинного ослабления равен отношению слоя половинного ослабления воды к плотности применяемого материала; от проникающей радиации $d_{\Pi P} = 23/n$; от радиоактивного заражения $d_{P3} = 13/n$; плотность материала находится по справочникам.

К _{осл. РЗ треб.} – требуемый коэффициент ослабления радиации от радиоактивного заражения

находим по формуле

$$K_{\text{осл.Р3 треб.}} = \frac{\mathcal{A}_{\text{Р3 max}}}{\mathcal{A}_{\text{уст.}}} = \frac{\mathbf{5} \cdot P_{\mathbf{1}}(\mathbf{t}^{-\mathbf{0,2}} - \mathbf{t}^{-\mathbf{0,2}})}{\mathcal{A}_{\text{уст.}}}$$

- ✓ Д РЗ мах максимальная доза на открытой местности ;
- ✓ Д _{уст.} доза установленная (п.5 усл.);
- ✓ P_1 максимальный уровень радиации на 1 ч после взрыва, ожидаемый на объекте, определяется в приложении 11 по q, R и V_c .
- ✓ t_н время начала заражения территории объекта относительно взрыва (начало облучения), определяем по формуле
- $t_{\rm K}$ время окончания о $t_{\rm H} = \frac{R}{V_{\rm c.B.}} + 1$ деляем по формуле

$$oldsymbol{t}_{ ext{K}} = oldsymbol{t}_{ ext{H}} + oldsymbol{T}_{ ext{ykp}}$$

Уровни радиации на оси следа наземного ядерного взрыва на 1 ч после взрыва, P/ч

Расстояние от центра	Мощность боеприпаса, кт										
взрыва, км	20	50	100	200	300	500	1000	2000	3000	5000	10 000
					корость	ветра 25	км/ч				
2	5200	8500	14 000	25 000	35 700	57 000	100 000	195 500	293 250	391 000	581 000
4	1700	3200	5700	10 000	14 300	23 000	44 000	64 800	86 400	129 600	340 000
6	1040	2000	3600	6800	9200	14 000	28 000	52 800	77 800	117 800	205 600
8	624	1200	2400	4700	6800	11 000	19 000	34 900	51 900	77 700	147 700
10	420	830	1500	3200	4800	8000	15 000	27 300	37 000	50 300	101 000
12	270	620	1200	2500	3600	5600	11 000	21 600	30 600	46 600	80 000
14	224	500	960	2000	2900	.4600	9700	18 000	. 24 000	32 000	60 000
16	150	400	800	1700	2400	3600	8100	14 400	20 200	29 800	47 000
20	100	300	590	1200	1600	2300	5500	8900	12 300	18 100	35 800
25	64	190	400	830	1200	1900	4900	7300	9800	16 100	32 000
30	50	135	270	570	880	1500	3700	5760	7500	13 060	25 000
40	19	- 68	150	380	600	1000	2400	3400	5100	8300	16 800
50	15	40	90	190	360	530	1100	2050	3150	4400	9400
60	13	26	47	120	200	370	750	1550	2350	3800	7600
80	3	13	30	75	130	240	500	890	1340	2100	4600
100	2	7	16	37	70	110	230	500	940	1250	2750
150	_	2,4	6,3	13	22	38	86	170	280	450	1100
200	_	1,2	3	6	10	18	41	80	140	240	410

3. Оценка систем жизнеобеспечения убежища

Д.1987, c.190-191

Для обеспечения жизнедеятельности укрываемых защитные сооружения оборудуются системами воздухоснабжения, водоснабжения, электроснабжения и связи, санитарно-технической системой.

3.1. Оценка системы воздухоснабжения

Определяется количество подаваемого воздуха системой в час в двух режимах:

- ✓ в режиме I чистой вентиляции
- ✓ и в режиме II фильтровентиляции.

3.1.1. Определяем возможности системы воздухоснабжения в режиме

<u> чистой вентиляция</u>

Исходя из того, что подача одного комплекта ФВК-1

<u>в режиме</u> составляет **1200** м³/ч.

$$\mathbf{W}_{\text{Q POST}} = \mathbf{n} \cdot \mathbf{1200}$$

Исходя из нормы подачи воздуха на одного укрываемого в режиме I (W_1 возд. I), определяем количество укрываемых, которое может быть обеспечено воздухом ($N_{X,0,ROZI}$ I)

$$N_{\text{m.o.bo3d.}} = W_{\text{o.bo3d.}} / W_{\text{1 bo3d.}}$$

Нормы подачи воздуха на одного укрываемого в <u>режиме</u> (W _{1 возд. I})

Зона	Средняя температура самого жаркого месяца, С	Норма подачи воздуха на одного укрываемого в режиме I (₩ _{1 возд. I}) м³/ч
- 1	до 20 °С	8
II	2025 °C	10
III	2530 ° C	11
IV	более 30 °C	13

3.1.2. Определяем возможности системы воздухоснабжения в режиме **П** (фильтровентиляция).

Исходя из того, что подача одного комплекта ФВК-1

Исходя из нормы подачи воздуха на одного укрываемого в режиме II (W $= 2 \text{ м}^3/\text{ч})$, определяем количество укрываемых, которое может быть обеспечено очищенным воздухом (N_{ж.о.возд. II})

N_{ж.о.возд. II} = W_{о.возд. II} / W 1 возд. II

$$N_{\text{ж.o.}\text{возд. II}} = W_{\text{o.}\text{возд. II}}^{\text{ж.o.}\text{возд. II}} / W_{\text{1 возд. II}}$$

Д.1987, с.190-191

3.2. Оценка системы водоснабжения

- Определяется запас воды в имеющихся емкостях ₩_{ов водв} л
 (п.18 усл.)
- и рассчитывается возможность системы по количеству укрываемых ($N_{\text{о.вод.}}$), чел., обеспечиваемых водой в течение заданного срока С ($T_{\text{укр}} = \pi.17 \text{ усл.}$), сут,
- заданного срока С (Т_{укр} = п.17 усл.), сут, исходя из установленной нормы (W_{1 вод.} = 3 л) на одного укрываемого в сутки л/чел.:

$$N_{\text{O-BOJ.}} = W_{\text{O-BOJ.}} / (W_{\text{1-BOJ.}} - C)$$

Д.1987, с.190-191

3.3. Оценка санитарно-технической системы (санузлов и канализации).

- Определяется количество укрываемых, которое может обеспечить система, исходя из имеющегося в защитном сооружении количества элементов и существующих норм:
- ✓ одна напольная чаша (унитаз) и один писсуар на 150 мужчин,
- ✓ одна напольная чаша (унитаз) на 75 женщин;
- умывальники из расчета один на 200 чел., но не менее 1 на санузел.
- В помещении санузла должен быть аварийный резервуар для сбора стоков
- Потребная вместимость резервуара (**W**_{0, ст.}) определяется из расчета **2** л (**W**_{1, ст.})сточных вод в сутки на одного укрываемого:

$$\mathbf{W}_{0,\mathrm{ct}} = \mathbf{M} \cdot \mathbf{W}_{1,\mathrm{ct}} \cdot \mathbf{C}$$

4. Оценка своевременности укрытия в убежищах

Д.1987, с.

Определяем время, необходимое рабочим, чтобы дойти до убежища и занять в нем место.

$$t_{ykp. 1 yq.} = L_{1} / 50 + 2 мин.$$
 $t_{ykp. 2 yq.} = L_{2} / 50 + 2 мин.$

<u>Примечание</u>: определенное время должно быть не больше **t** укр

5. Общие выводы и предложения

Д.1987, с.