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Variational Approach to the
Fixed-Time, Free-Endpoint

Problem



We now want to see how far a variational
approach - i.e. an approach based on analyzing
the first (and second) variation of the cost
functional - can take us in studying the optimal
control problem formulated in the previous

lecture.



* Preliminaries
Consider the optimal control problem:

X =f(t,x,u), x(ty) =X, (0)
where x(t) € R" is the state, u(t) e U c R™ is
the control, t € R is the time, £y is the initial
time, X is the initial state; the cost functional is

I(u) := f 1L(t,x(t),u(t))dt + K(t1,xy)

0

where t4, X are the final time and state;



with the following additional specifications:

= the target set is § = {t1} X R", where t; is a
fixed time (so this is a fixed-time, free-
endpoint problem);

= the set U = R™ (the control is unconstrained);

* and the terminal cost is K = K(x;), with no

direct dependence on the final time (just for

simplicity).



We can rewrite the cost in terms of the fixed
final time t; as

I(u) = f 1L(t,x(t),u(t))dt+ K(x(t1)) (1)

0
Our goal is to derive necessary conditions for

optimality.

Let u" be an optimal control, by which we
presently mean that it provides a global

minimum.



In other words, I(u”) < I(u) for all piecewise

continuous controls u.

Let x* be the corresponding optimal trajectory.

We would like to consider nearby trajectories of

the familiar form
X=X +an (2)
but we must make sure that these perturbed

trajectories are still solutions of the system (0),

for suitably chosen controls.



Unfortunately, the class of perturbations n that
are admissible in this sense is difficult to

characterize if we start with (2).

Note also that the cost I, whose first variation
we will be computing, is a function of u and not

of x.

Thus, in the optimal control context it is more

natural to directly perturb the control instead.



And then define perturbed state trajectories in

terms of perturbed controls.

To this end, we consider perturbed controls of
the form

u=u +ad (3)
where € is a piecewise continuous function from

[to; t1] to R™ and « is a real parameter as usual.



We now want to find (if possible) a function

n: [£; t4] - R"
for which the solutions of (0) corresponding to
the perturbed controls (3), for a fixed &, are
given by (2).

Actually, we do not have any reason to believe
that the perturbed trajectory depends linearly

on « as in (2).



Thus we should replace (2) by the more general
(and more realistic) expression
x=X"+an+o(a) (4)

It is obvious that n(ty) = 0 since the initial

condition does not change.
Next, we derive a differential equation for n.

Let us use the more detailed notation x(¢; «) for
the solution of diff. eq. (0) at time ¢

corresponding to the perturbed control (3).



The function x(.; ) coincides with the right-

hand side of (4) if and only if
Xq(t,0) = (1) (5)
for all t. (we are assuming here that the partial

derivative x, exists.)

Next, we differentiate the quantity (5) with
respect to time and interchange the order of

partial derivatives.



We have

. d d .
N = Exa(t, 0) =Xq,:(8,0) = P x(t, a)

a=0

d
—|  ftxt a),u(® + a¥®)
0

nan — da
(44

= fx(t,x(t,0),u*(®)) - x,(t,0) + fu(t,x(t,0),u*(t)) - &(t)

According to (4) and (5) we obtain
() = fx(tx (@), u @) -n@® + fu(t,x*(@®),u @) - (D)



The last expression can be written more
compactly (remembering also the initial

condition n(ty) = 0) as
N =fx@E&x"u’) -+ fu(t,x",u) - §

=f4

°n+fu

*

% mt =0. (6)

Here and below, we use the shorthand notation
|« to indicate that a function is being evaluated

along the optimal trajectory.



The linear time-varying system (6) is nothing
but the linearization of the original system (0)

in the neighborhood of the optimal trajectory.

To emphasize the linearity of the system (6) we
can introduce the notation A,(t) := f,|.(t) and
B.(t) == f,l.(t) for the matrices appearing in it,

bringing it to the form

N=A4.()-n+B.(0)-§ Nt =0 (7)



The optimal control u® minimizes the cost given
by (1), and the control system (0) can be viewed
as 1imposing the pointwise-in-time (non-
integral) constraint
x(t) — f(t,x(&),u(t)) = 0.

Motivated by Lagrange's idea for treating such
constraints in calculus of variations, expressed
by an augmented cost, let us rewrite our cost as

inglicated below.



I(n) = K(x(tl)) +

+ 1{L(t, x(t),u(t)) + p(t) - [x(®) — (¢, x(t),u(®))|}de

for some C! function p:[ty;t;] - R" to be
selected later.~

As we will see momentarily, p(.) is also closely
related to the momentum.

Clearly, the extra term inside the integral does

not change the value of the cost.



We will be working in the Hamiltonian
framework, which is why we continue to use
the same symbol p by which we denoted the
momentum earlier (while some other sources

prefer A and ).

We will henceforth use the more explicit

notation (.,.) for the inner product defined in

R™.



Let us introduce the Hamiltonian

H(t: X, U, p) = (p' f(t' X, U)> T L(t: X, U) (8)

Note that this definition matches our earlier
definition of the Hamiltonian in calculus of

variations, where we had

H(x,y,y',p) =(p,y)—L(x,y,y);



We just need to remember that after we changed
the notation from calculus of variations to
optimal control, the independent variable x
became t, the dependent variable y became x, its
derivative y’' became x and is given by (0), and
the third argument of L is taken to be u rather
than x (which with the current definition of H

makes even more sense).



We can rewrite the cost in terms of the

Hamiltonian as

I(u) == K(x(t1)) +

+[ e, %) — (e, x(0), u(®), p®)]dr (9)



» First Variation

We want to compute and analyze the first
variation 61|, of the cost functional I(u) at the

optimal control function u".

To do this, in view of the definition
I(y + an) = 1(y) + 61 , () -a+o(a),

we must isolate the first-order terms with
respect to o in the cost difference between the

perturbed control (3) and the optimal control.



I(u) —I(u*) =I(u*"+ aé) —I(u*) =

=6l (§) a+o(a) (10)

The formula (9) suggests to regard the
difference I(u) —I(u*) as being composed of
three distinct terms, which we now inspect in

more detail.

We will let the approximate equality ~ denote

equality up to terms of order o(«).



For the terminal cost, we have
K(x(t1)) — K(x*(t) =
K(x*(t)) + an(ty) + o(@)) — K(x"(t;)) »
(Ky(x*(¢)),an(e))  (11)

For the Hamiltonian, omitting the ¢ —arguments
inside x and u for brevity, we have
H(t,x,u,p) — H(t,x*,u*,p) =

H(tx" +anu” +afp)—-HEx",u',p) = -



.. = (Hy(t,x", 0", p), an) + (Hy(t,x",u", p), a &)
(12)
As for the inner product (p,x—x"), we use
integration by parts as we did several times in

calculus of variations:

(p(), X(®) — X (O)dt = (p(8),x(O) — X" (D) J

o

t1

— | (p(®),x(t) —x*(¢))dt = -

4))



t1

)

where we used the fact that x(ty) = x"(¢p).

Combining the formulas (9) — (13), we readily

see that the first variation is given by

t1

. (E) ~ ((p + Hx(t,X*, u*, p): ]]) +

o

)|

+(H, (t,x*,u*, p), ) dt + (Ky(x*(t1)) + p(t1), n(¢1))
(14)



Note that here 1 is related to ¢ via the system
(6).

The familiar first-order necessary condition for
optimality says that we must have 6I|,<(§) =0
for all &.

This condition is true for every function p, but
becomes particularly revealing if we make a

special choice of p.



Namely, let p be the solution of the differential

equation
p=—H,(t,x",u,p) (15)
satisfying the boundary condition
p(t1) = —Kx(x"(t1)) (16)

Note that this boundary condition specifies the
value of p at the end of the interval [t,; t{], i.e. it
is a final (or terminal) condition rather than an

initial condition.



In case of no terminal cost we treat K as being

equal to 0, which corresponds to p(t;) = 0.

We label the function p defined by (15) and
(16) as p* from now on, to reflect the fact that it

is associated with the optimal trajectory.

We also extend the notation [, to mean
evaluation along the optimal trajectory with p =

P, so that, for example, H|.(t) = H(¢,x",u’, p").



Setting p = p* and using the equations (15) and
(16) to simplify the right-hand side of (14), we

are left with (for all perturbations )

(&)= —fttl <Hu

0

ol

*,E>dt= 0 (17)

We already know from Main Lemma that this

implies H, |, = 0 or, in more detail,

H,(t,x*(t),u*(t),p*(t)) = 0 VtE [ty tq]. (18)



The meaning of this condition is that the
Hamiltonian has a stationary point as a function

of u along the optimal trajectory.

More precisely, the function H(t,x*(t),u,p*(t))
has a stationary point at u*(¢) for all ¢.
This is just a reformulation of the property

already discussed by us in the context of

calculus of variations.



In light of the definition (8) of the Hamiltonian,

we can rewrite our control system (0) more
compactly as x = H,(t,x,u, p).

Thus the joint evolution of x* and p* is
governed by the system

x* = H (19)

pl-
p* — _Hxl*
which you can recognize as the system of

Hamilton's canonical equations.



Let us examine the differential equation for p*

in (19) in more detail.

We can expand it with the help of (8) as

p* — _(fx)T

where we recall that f, is the Jacobian matrix of

'p*+Lx

*

f with respect to x.

This is a linear time-varying system of the form

p* = —Al - p* + L|. (20)



Here A.(.) is the same as in the differential
equation (7) derived earlier for the first-order

state perturbation 1).

Definition

T

Two linear systems x* = Ax and z=—A" z are

said to be adjoint to each other, and for this

reason p is called the adjoint vector.




Note also that we can think of p as acting on the
state or, more precisely, on the state velocity
vector, since it always appears inside inner

products such as (p, X).

For this reason, p is also called the costate of

the system.

Let’'s summarize the results obtained so far and

see how to apply them in practice.



The basic optimal control problem can be stated
as follows:

Find the control vector u = {uq, u,, ..., u,, }
which minimizes the functional, called the

performance index,

Ly
Jlu] = f L(x,u t)dt + K(t{,x(t;)) (21)
t

0

where x = {x{,x5,...,x,} 1is called the state

vector.



Here t is the time parameter; t; the terminal

time, and L is a function of x, u, and t.

The state variables x; and the control variables

u; are related as

dxi
dt

= fi(t; X1,X2, 0., Xy} Uq, Up, ..., Uy )

i=1,2..,n
or

. x = f(t,x,u) (22)



In many problems, the system is linear and Eq.

(22) can be stated as
x = A(t)x + B(t)u (23)
where A(.) is an n X n matrix and B(.) is an n X

m matrix.

Further, while finding the control vector u, the
state vector x is to be transferred from a known
initial vector x( at t = ¢, to a terminal vector x¢

at t = t{, where some (or all or none) of the state

variables are specified.



Necessary Conditions for Optimal Control
To derive the necessary conditions for the
optimal control, we consider the following

simple problem: find u which minimizes

T
Jul :fo L(t,x,u)dt (24)

subject to
x = f(t,x,u) (25)

wi.th the boundary condition x(0) = x,.



To solve this optimal control problem, we
introduce a Lagrange multiplier 4 and define an

augmented functional as follows:
T
lul = [ (Lxw) + Al xw - de (26
0

Since the integrand
F=L+A(f —x) (27)
i1s a function of the two variables x and u, we

can write the Euler-Lagrange equations for it.



If we introduce the notations

/ s /

y1 =X Y1 =X, Y2 = U, Yy, =u

the Euler-Lagrange equations take the form

oF d (6F) oF d (6F

dy, dt\ay, ~ 9x  dt ax) (28)

OF d(aF) OF d(aF
=0 -

-0 (29
dy, dt\ay, du dt au) 0 (23



In view of relation (27), Egs. (28) and (29) can

be expressed as

aL+Aaf+J'L—0 (30)
ax ax B
aL+}Laf—0 (31)
ou ou

A new functional H, called the Hamiltonian, is

defined as

H=L+Af (32)



and Egs. (30) and (31) can be rewritten as

oH _ A (33)
ox

OH

—=0 (34)
ou

Equations (33) and (34) represent two first-order
differential equations.

The integration of these equations leads to two
constants whose values can be found from the known

boundary conditions of the problem. .



If two boundary conditions are specified as
x(0) = x¢9 and x(T) = x, the two integration
constants can be evaluated without any

difficulty.

On the other hand, if only one boundary
condition is specified as, say, x(0) = x, the free-
end condition is used as

0F/0x=0 or A=0 at t=T



Example 1. Find the optimal control u that

makes the functional

1
j = jo (% + u?)dt (Ey)

stationary with
X=u (E2)
and x(0) = 1.

Note that the value of x is not specified at t = 1.



Solution. The Hamiltonian can be expressed as

H=L+Au=x*+u*+2u
and Eqgs. (33) and (34) give
—2x =1
2u+4A=20

Differentiation of Eq. (E;) leads to
20+1=0

(E3)

(E4)
(Es)

(E6)



Solution.(continued)
Equations (E,) and (E;) yield
u=x (E7)

Since x = u [according to Eq. (E;)], we obtain
X=u - X=x
that is
x—x=0 (Eg)
The solution of Eq. (Eg) is given by
x(t) = c¢qsinht + ¢, cosht (Eg)



Solution . (continued) Here c¢; and c, are
constants. By using the initial condition x(0) =

1, we obtain ¢, = 1.

Since x is not fixed at the terminal pointt =T =
1, we use the condition A =0 att =1 in Eq. (E;)
and obtain u(t = 1) = 0.

But

U =X = c¢qcosht + sinht (E10)



Solution.(continued) Thus

u(1) =0 =cqycosh1 +sinh1

or
c; = —sinh1/cosh1 (E11)

and hence the optimal control is

(t) = sinh 1 het sinhf = sinh(1 —t) (E.,)
. cosh1 c0S St = cosh1 12

The corresponding state trajectory is given by

x(t) =u =cosh(1—-1t)/cosh1 (E13)



Necessary Conditions for a General Problem
We shall now consider the basic optimal control
problem stated earlier: find the optimal control

vector u that minimizes

Jlu] = J 1L(t,x,u)dt (35)

0

subject to
xi — fi(t,X, U) (36)
i=1,2,..,n)



Now we introduce a Lagrange multiplier 4;, also
known as the adjoint variable, for the ith
constraint equation in (36) and form an

augmented functional as follows
t1 n
= e+ an-w|ae @37)
to i=1
The Hamiltonian functional H is defined as

i=1 2



So that

Since the integrand

n
i=1

depends on x, u, and t, there are n+m
dependent variables (x and u) and hence the

Euler-Lagrange equations involve n + m Eqs.



The Euler-Lagrange equations become

oF d <0F

-0(i=12.. 41
ox. dt axi> i=12..,n) (41)

ou; dt

oF d (aF
j

aui) =0(G=12,...m) (42)



In view of relation (40), Eqgs. (41) and (42) can

be rewritten as

Equations (43) are known as adjoint equations.



The optimum solutions for x, u, and A can be

obtained by solving Eqs. (36), (43), and (44).

There are totally 2n + m equations with n x;’s, n

A’s,and m u;’'s as unknowns.

If we know the initial conditions x;(t;) for i =
1,2,..,n and the terminal conditions x;(t,) for

j=1,2,...,1 (I<n), we will have the terminal

values of the remaining variables, namely,

Xj(&q) forj=1+1,1+2,...,n free.



Hence we will have to use the free end

conditions

() =0 G=1+1,1+2,..,n) (45)

Equations (45) are called the transversality

conditions.




The purpose of the next exercise is to recover
earlier conditions from calculus of variations,
namely, the Euler-Lagrange equation and the
Lagrange multiplier condition (for multiple
degrees of freedom and several non-integral
constraints) from the preliminary necessary
conditions for optimality derived so far,
expressed by the existence of an adjoint vector

p* satisfying (18) and (19).



Exercise 2.
The standard (unconstrained) calculus of
variations problem with n degrees of freedom
can be rewritten in the optimal control language
by considering the control system
x; =u; (i=1,2,..,n)

together with the cost

t1

(%) = jt L(t, x(¢),x(t))dt

0



Exercise 2.(continued)
Assuming that a given trajectory satisfies (18)
and (19) for this system, prove that the Euler-

Lagrange equations,

d
Ein = Ly,
are satisfied along this trajectory.

Xk %k k



Thank you for attention
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