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=A Matrix is simply a rectangular array of numbers arranged in
rows and columns.

=The size of a matrix is indicated by the number of its rows and the

number of its columns

T
T

ne whole matrix is labeled by a capital letter

ne individual numbers (elements) contained in the matrix are
labeled by lower case letters with a suffix to identify their locations
within the matrix.
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Examples:

1) 4= (““ “iz ] — (2 3] 2X2 matrix
ty dy 4 6

9 B= by, by, b13 3 57 3 fr
) by, by, b23 2 4 0 X3 matrix

/Cu C), Y (1 -1)
3) C=1C, C,|=2 -2 ’}
G Gy ) 3 -3




Addition (and Subtraction) of matrices W 2.2

=You can add (subtract) two matrices of the same size (equal
number of rows and columns).

=The sum (difference) of two equal-sized matrices results in the
new matrix of the same size as the two matrices being added.

Example:
34) (1 -2 1) (@2+) (B+(-2) (4+D)) (3 1 5
6 7]{2 3 5)‘((5”) (6+3) (7+5)j_(7 9 12j
2 3 4) (1 -2 1) (2= (3=(=2) @4-D) (1 53
56 7) 12 3 5) ((5-2) (6-3) (7-5)) 3 3 2
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Scalar multiplication

*Multiply each element of the matrix by the number.

Example:

3 4\ ((3-3) (3:-4)) (9 12)
2 5) ((3:2) 3-5) |6 15,







Matrix multiplication

=Two matrices can be multiplied only if the number of columns of
the 15! matrix equals to the number of the rows of the 2" matrix.

=Multiply rows of the 1t matrix by columns of the 2" matrix
| AT
_ 12 2=
% I
SRS

B (2:1+3:2+4:3) (2:3+3:2+4-1) 3 20 16
(1-1+3-2+2-3) (1-3+3:2+2:1)

N % i



Matrix Transpose

=The franspose of matrix can be obtained by interchanging the rows
and columns

=The first row of the matrix A is the first column of matrix A
transposed




Zero & ldentity matrix

=/ero matrix 1s a matrix with all elements 0.

=|dentity matrix is a square matrix with elements of 1s on the main
diagonal from top left to bottom right and Os on other positions

Z.ero matrix

s o

0O 0 O
i
0O 0 O

VA

|

Identity matrix
1 0 0)
O 1 O
0 0 1,

1 0)
0 1
0 0)

==




Determinant of a matrix

* Anumerical value of matrix

 (Can be a negative number

* EXxists for a square matrix only

» Determinant for 2x2 matrix is calculated as follows:




Inverse of a (2x2) matrix (1)

1 d,, —dyp

(), -ay)—(a,-ay,) \—ay 3%

=
1




Inverse of a (2x2) matrix (2)

Example:A:(1 2jthen

3 4

Calculate:

i 1 (4 -2y 1 (4-2) (-2 1
T1-H-23) =3 1) 21=3 1) |15 -05

Check:

o (U 2) (72 1) _(@(2)42:15) (1-1+2:(-0.5)) _(1 0
3 45 —05) (B(2)+4-1.5) (B3-1+4-(=0.5)) (0 1
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= A set of linear equations (or functions)
considered together, where all the equations
have the same unknowns

2x+5y=19

Example: 4
| B2y =8

(x; ¥) = (2; 3) is a solution
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» The price of a product at which the
quantity demanded 1s equal to the
quantity supplied

Op= Oy

What kind of relationship does price have with quantity
demanded and supplied?




Equilibrium price In practice

If the quantity demanded (Qp) and quantity supplied
(Qg¢) have following functions (in terms of price)
respectively and at equilibrium price Qp = Qg, hence

ig . (0O=-0.5P +100
JQD 0.5P+100 :MQ

Q.= 2P-25 |Q= 2P-25

(P; O)=(50; 75) is the equilibrium point



1. WESTMINSTER

E q u i I i b ri u m pOi nt i n g ra p h }j“j‘w:'i" P INTERNATIONAL UNIVERSITY IN TASHKENT

An Accredited Institution of the University of Westminster (UK)

30 Supply |

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Quantity




Wil VW ESTMINSTER

B re a keve n p o i nt i n th e o ry B rerNATIONAL UNIVERSITY IN TASHKENT

An Accredited Institution of the University of Westminster (UK)

The level of output for which the total
revenue 1s equal to the total cost,

TR=TC

Saying simply, in such situation, you make
no losses or no gains
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If the total revenue and total cost shown below are
confirmed to be true, find the break even point

[R= 20
3
C=1.50+100

where, R is the revenue,

Q is the quantity,
C is the total cost

(O; R)=(0; C)=(200:400) is the breakeven point
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« Gauss’s method
= Matrix inverse’s method
= Cramer’s method

Let’s solve the following Simultaneous linear
equations using each of the three methods above:

[2x+5y=19
x+2y=8

.
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= eliminate x or y in the SLEs

r

2x+5y=19 |-1 2x+5y= 19
— (+)>
x+2y=8 |(-2) |-2x-4y=-16

2% E5y=19 [2%+5-3=19 X
— 9 > 9 —> <
}::3 vy:3 \}::3

“

Thus, (x; v) =(2; 3) is the solution of the SLEs
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2x+5y=19 (23 X\ 19
| x+2y=8 | y 8

N
N
—
l
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iy, Ty b a, )| ay b
A= A, = A, =
Ay ax b, ay a,; b,
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Cramer’s method

Example:

[2x+5p=19 2 5 19 5 2 19
< 14: :‘41: ;14?:
| x+2y=8 1 2 8 2/ ° |1 8

A =-1 |4]=-2 |4,|=-3
B Al _

;o e —2—2 i “\"——3:3
4 -1 4 -1




