

ия: номенклатура, классификация, применение, физические свойства

8 класс

Определите степени окисления элементов в соединениях и дайте названия веществам

1 вариант

 Na_2S , Na_3N , NaH, $MgCl_2$, MgS, Mg_3N_2 , Al_2S_3 , All_3 , N_2O_3 , Zn_3P_2

2 вариант

 $N_2O_1, NO_2, N_2O_5, SO_3, SO_2, H_2S_5, Fe_2O_3, CuO_1, Cu_2S_2$

Составьте формулы веществ

- Сульфид лития
 Хлорид кальция

 Li₂S

 CaCl₂
- Оксид хрома (VI)
 Cr₂O₃
- Оксид углерода
 (IV)
 Mg₂Si
- Силицид магния————
 CuF₂
- Фторид меди (II) ————
 AlBr₃
- Бромид
 алюминия
- Оксил кромпиа

Решите задачу

1 вариант

Вычислите объем, который займут 88 мг оксида углерода (IV) (н.у.). Сколько атомов каждого элемента содержится в этой порции газа?

2 вариант

Найдите массу 11,2 мл (н.у.) оксида серы (VI). Сколько атомов каждого элемента содержится в этой порции газа?

- Это сложные вещества, состоящие из ионов металлов и связанных с ними одного или нескольких гидроксид-ионов ОН⁻
- Названия оснований «гидроксид + название металла в родительном падеже + (римская цифра с.о. Ме)»
- Например: NaOH гидроксид натрия
 Fe(OH)₂ гидроксид железа (II)
 Fe(OH)₃ гидроксид железа (III)

Найдите формулы оснований и назовите их

H_2O_2	CuO	НОН
LiOH	Cu(OH) ₂	Mg(OH)
		2
Ca(OH) ₂	HNO ₃	BaSO ₄

1 вариант

 $MgCl_2$ KOH $Al(OH)_3$ CuOH $Ba(OH)_2$ Na_2O $Zn(OH)_2$ $CaCO_3$ $Cr(OH)_3$

2 вариант

Классификация оснований

1. По кислотности (числу гидроксид-ионов OH⁻)

Найдите формулы оснований и разделите их по группам:

NaOHHClCuOHFeCl₂Ba(OH)₂CO₂Mg(OH)₂Na₂SAl(OH)₃Cu(OH)₂SCaONa₂SO₄LiOHHNO₃Cr(OH)₃

Классификация оснований

Таблица растворимости кислот, солей и оснований

												Кати	оны										
			Силь	ные				1	Слабые основания														
		H+	ri,	к*	Na*	Ba ²⁺	Ca ²⁺	NH4	Mg ²⁺	Sr ²⁺	Al ³⁺	Cr3+	Fe ²⁺	Fe ³⁺	Ni ²⁺	Co2+	Mn ^{2*}	Zn ²⁺	Ag*	Hg ²⁺	Pb2+	Sn ²⁺	Cu ²⁺
	OH-		R	Р	P	Р	M	Р	Н	M	Н	н	Н	Н	н	Н	Н	Н	?	?	Н	Н	н
	F -	P	M	P	P	M	Н	P	Н	Н	M	P	M	Р	P	P	Р	P	P	-	Н	Р	Р
	CI"	Р	P	P	P	Р	Р	P	P	P	P	Р	P	Р	Р	P	Р	Р	Н	Р	M	P	Р
	Br"	P	Р	P	P	P	Р	P	P	Р	Р	Р	P	P	Р	P	Р	P	Н	M	M	Р	Р
١.	17	P	P	P	P	P	P	P	P	P	Р	7	P	7	P	P	P	P	Н	н	M	M	7
HS HS	S2-	M	P	P	P	-	-	-	-	P	-	-	Н	?	Н	Н	Н	Н	Н	Н	Н	Н	Н
Анионы	SO ₃ ²⁻	P	P	P	P	Н	Н	P	M	Н	?	-	Н	?	Н	Н	Н	M	Н	?	Н	?	?
٩	SO ₄ ²⁻	P	P	P	P	Н	M	P	P	Н	Р	P	P	P	P	P	P	P	M	-	Н	Р	P
	NO ₃	Р	P	P	P	P	P	P	P	P	Р	P	P	P	P	P	P	P	P	P	P	-	P
	PO4 -	P	Н	P	P	Н	Н	-	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	CO3-	P	P	P	P	Н	Н	P	Н	Н	?	?	Н	?	Н	Н	Н	Н	Н	?	Н	?	Н
	SIO ₃ ²⁻	Н	Н	P	P	Н	Н	-	Н	Н	?	?	Н	?	?	?	Н	Н	?	?	Н	?	?

Легенда Физические свойства

Получение и химические свойства

Найдите растворимые, малорастворимые и нерастворимые основания, составьте их формулы, дайте им названия

Качественные реакции

- Реакции, с помощью которых распознают определенные вещества
- □ Как можно определить основания?
- Щелочи определяют с помощью индикаторов
- Индикаторы (от лат. «указатели»)- вещества, изменяющие свою окраску в зависимости от среды раствора

Таблица изменения окраски индикаторов в различных средах

Индикатор Среда	Лакмус	<u>Метилоранж</u>	Фенолфталеин
Кислая среда	Красный	Розовый	Бесцветный
Нейтральная среда	Фиолетовый	Оранжевый	Бесцветный
Щелочная среда	Синий	Желтый	Малиновый

Кислая среда - pH<7 Щелочная среда - pH >7 Нейтральная среда pH =7

Лакмус

- Красящее вещество природного происхождения, один из первых и наиболее широко известных кислотно-основных индикаторов
- В кислых средах (рН<4,5) лакмус приобретает красную окраску, в щелочных (рН>8,3) синюю
- Добывается из растительного сырья, в частности из некоторых <u>лишайников</u>
- Впервые был применён в качестве химического реагента и индикатора других веществ около 1300г. испанским врачом и алхимиком Арнальдусом де Виланова (Arnaldus de Villanova)
- □ С XVI-ого века, когда информация о способе получения лакмуса распространилась, голубой лакмус из лишайников в промышленных количествах начал производиться в Голландии на экспорт под названиями "Bergmoos" и "Klippmoos". В 1704 году этот индикатор получил своё нынешнее название лакмус

Мнемоническое правило

- Для того, чтобы запомнить цвет лакмуса в различных средах, существует стихотворение:
- Индикатор лакмус красный Кислоту укажет ясно.
 Индикатор лакмус синий, Щёлочь здесь не будь разиней, Когда ж нейтральная среда, Он фиолетовый всегда.

Метиловый оранжевый

- является органическим синтетическим красителем из группы азокрасителей
- в кислой среде красный, в щелочной жёлтый
- Метиловый оранжевый получают, диазотируя сульфаниловую кислоту, а затем сочетая полученное вещество с диметиланилином

Мнемоническое правило

- Для запоминания цвета индикатора метилового оранжевого в щелочах и кислотах служит стихотворение:
- От щелочи я желт как в лихорадке,
 Я розовею от кислот, как от стыда.
 И я бросаюсь в воду без оглядки,
 Здесь я оранжевый практически всегда.

Фенолфталеин

- Трифенилметановый краситель, кислотноосновный индикатор, изменяющий окраску от бесцветной (при рНТрифенилметановый краситель, кислотно-основный индикатор, изменяющий окраску от бесцветной (при рН < 8,2) до красно-фиолетовой, «малиновой» (в щелочной); но в концентрированной щелочи вновь бесцветен. В концентрированной серной кислоте образует розовый Трифенилметановый краситель, кислотно-основный индикатор, изменяющий окраску от бесцветной (при рН < 8,2) до красно-фиолетовой, «малиновой» (в щелочной); но в концентрированной щелочи вновь бесцветен. В концентрированной серной
- ▶ кислоте образует розовый <u>катион</u>.

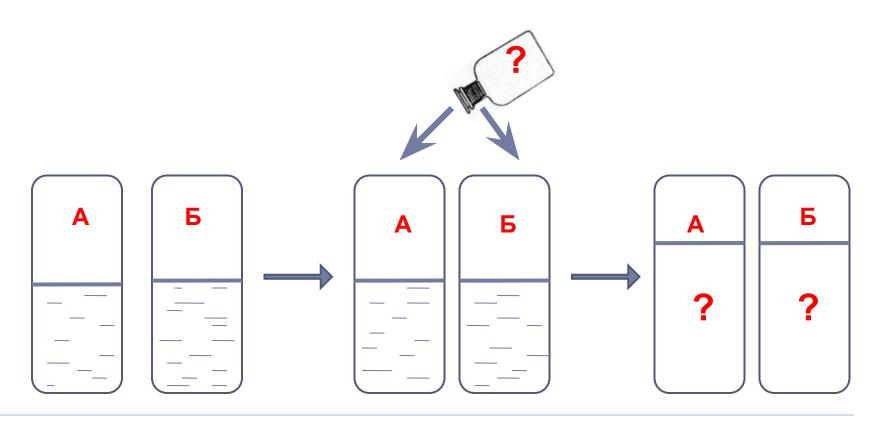
Мнемонические правила

- Для запоминания цвета фенолфталеина в щелочной среде (в случае его применения в качестве индикатора):
- Фенолфталеиновый в щелочах малиновый
 Но несмотря на это в кислотах он без цвета.
- Попасть в кислоту для других неудача,
 Но он перетерпит без вздохов, без плача.
 Зато в щелочах у фенолфталеина
 Настанет не жизнь, а сплошная малина!
- Ярче цвета всех малин наш фенолфталеин!

Качественное определение веществ

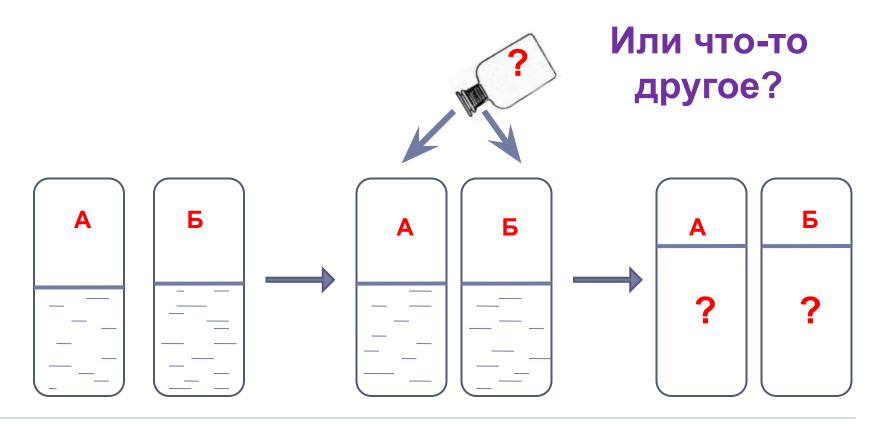
- Известковая вода качественный реагент на углекислый газ
- Гидрокси́д ка́льция (Са(ОН)₂, гашёная известь или «пушонка») химическое вещество, сильное основание. Представляет собой порошок белого цвета, плохо

 $CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$ растворение осадка


Известковая вода

- □ Прозрачный раствор гидроксида кальция. Она используется для обнаружения углекислого газа. При взаимодействии с ним она мутнеет, так как образуется нерастворимый карбонат кальция: $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O$.
- Известковое молоко взвесь (суспензия) гидроксида кальция в воде, белая и непрозрачная. Она используется для производства сахара и приготовления смесей для борьбы с болезнями растений, побелки стволов.

Экспериментальная задача


В пробирках А и Б находятся раствор гидроксида натрия и вода. Как определить содержимое каждой из пробирок?

Экспериментальная задача

В пробирках А и Б находятся раствор гидроксида калия и известковая вода. Как определить содержимое каждой из пробирок?

Гидроксид натрия

- другие
 названия каустическая сода, каустик, едкий
 натр, едкая щёлочь самая
 распространённая щёлочь, разъедает кожу, бумагу,
 и другие органические вещества, вызывая сильные
 ожоги, потерю зрения
- химическая формула NaOH.
- белое твердое вещество. Если оставить кусок едкого натра на воздухе, то он вскоре расплывается, так как притягивает влагу из воздуха. Едкий натр хорошо растворяется в воде, при этом выделяется большое количество теплоты. Раствор едкого натра мылок на ощупь.
- В год в мире производится и потребляется более 57 миллионов тонн едкого натра.

Историческая справка о NaOH

- □ До XVII века щёлочью (фр. alkali) называли также карбонаты натрия и калия. В 1736 французский учёный А. Л. Дюамель дю Монсо впервые различил эти вещества: гидроксид натрия стали называть каустической содой, карбонат натрия кальцинированной содой (по растению Salsola Soda, из золы которого её добывали), а карбонат калия поташем.
- В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium — калий.

Едкий натр применяется во множестве отраслей промышленности и для бытовых нужд:

- в **целлюлозно-бумажной промышленности** для делигнификации целлюлозы, в
 производстве бумаги, картона, искусственных волокон, древесноволоконных плит
- Для омыления жиров при производстве мыла, шампуня и друки моющих средств
- В химических отраслях промышленности
- □ Для изготовления биодизельного топлива получаемого из растительных масел и используемого для замены обычного дизельного топлива. Для получения биодизеля к девяти массовым единицам растительного масла добавляется одна массовая единица спирта (то есть соблюдается соотношение 9 :1), а также щелочной катализатор (NaOH) хорошая воспламеняемость и высокое цетановое число
- В гражданской обороне для дегазации и нейтрализации отравляющих веществ

Использование NaOH

- Пидроксид натрия также используется в сочетании с цинком для фокуса. Медную монету кипятят в растворе гидроксида натрия в присутствии гранул металлического цинка, через 45 секунд цвет копейки станет серебристым. После этого копейку вынимают из раствора и нагревают в пламени горелки, где она, практически моментально становится «золотой». Причины этих изменений заключается в следующем: ионы цинка вступают в реакцию с гидроксидом натрия (в недостатке) с образованием Zn (OH)₄²⁻ который при нагревании разлагается до металлического цинка и осаждается на поверхность монеты. А при нагревании цинк и медь образуют золотистый сплав латунь.
- □ для мойки пресс-форм автопокрышек.
- для нелегального производства метамфетаминов и других наркотических средств.
- В приготовлении пищи: для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и придания им чёрной окраски, при производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E524. Некоторые блюда готовятся с применением каустика:
 - □ Лютефиск скандинавское блюдо из рыбы сушёная треска вымачивается 5-6 дней в едкой щёлочи и приобретает мягкую, желеобразную консистенцию.
 - Брецель немецкие крендели перед выпечкой их обрабатывают в растворе едкой щёлочи, которая способствует образованию уникальной хрустящей корочки.

Гидроксид калия

- 🛘 «калиевый щёлок» КОН.
- Тривиальные названия: едкое кали, каустический поташ.
- Бесцветные, очень гигроскопичные кристаллы, но гигроскопичность меньше, чем у гидроксида натрия.
- Водные растворы КОН имеют сильнощелочную реакцию.
- Получают электролизом растворов КСІ, применяют в производстве жидких мыл, для получения различных соединений калия.

Применение гидроксида калия

- В пищевой промышленности зарегистрирован в качестве пищевой добавки **E525**.
- для получения метана, поглощения кислотных газов и обнаружения некоторых катионов в растворах.
- в производстве жидких мыл, как исходный продукт для получения различных солей калия и т. д.
- В циркониевом производстве используется для получения обесфторенной гидроокиси циркония.
- □ В сфере промышленной мойки продукты на основе гидроксида калия, нагретые до 50-60 °С, применяются для очистки изделий из нержавеющей стали от жира и других масляных веществ, остатков механической обработки.
- □ в качестве электролита в щелочных (алкалиновых) батарейках.
- в ресомации альтернативном способе "захоронения" тел.

Техника безопасности при работе с **NaOH** и **KOH**

- При контакте слизистых поверхностей с едкой щёлочью необходимо промыть поражённый участок струей воды, а при попадании на кожу слабым раствором уксусной кислоты.
- □ При работе с едким натрием рекомендуется использовать следующие защитные средства: химические брызгозащитные очки для защиты глаз, резиновые перчатки или перчатки с прорезиненной поверхностью для защиты рук, для защиты тела химически-стойкая одежда пропитанная винилом или прорезиненные костюмы.
- □ ПДК гидроксида натрия в воздухе 0,5 мг/м³.

Составить формулы оксидов, соответствующих гидроксидам

□ Например:

```
Гидроксид калия – К<sup>+1</sup>ОН – оксид калия
Гидроксид натрия - ... - ...
Гидроксид железа (III)- ... - ...
Гидроксид меди (II) - ... - ...
Гидроксид меди (I) - ... - ...
Гидроксид алюминия - ... - ...
```

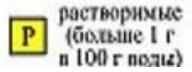

Заполните таблицу «Области применения оснований»

Название и	Область применения										
формула вещества	Производств о мыла	В строительст ве	Получение тугоплавкого стекла	Для распознаван ия углекислого газа							
Известковая вода (формула)	МЫ	ни	ко	ин							
Едкое кали (формула)	ди	УС	КА	ОС							
Гашеная известь (формула)	УМ	то	МЫ	ди							
Едкий натр (формула)	PH	AF	МЫ И ОБЛАСТЯМИ ПРИ	TO MEHERING ELO							

УСТАНОВИТЕ СООТВЕТСТВИЕ МЕЖДУ ВЕЩЕСТВОМ И ОБЛАСТЯМИ ПРИМЕНЕНИЯ ЕГО ИСПОЛЬЗОВАНИЯ. ИЗ СЛОГОВ, СООТВЕТСТВУЮЩИХ ПРАВИЛЬНЫМ ОТВЕТАМ, ПОЛУЧИТСЯ НАЗВАНИЕ ВЕЩЕСТВА КОТОРЫМ МОЖНО ... (ЧТО ДЕЛАТЬ?)

РЕШИТЕ ЗАДАЧИ

- Вычислите количество вещества, которое составляют 342 г гидроксида бария.
 Сколько ионов каждого вида будет содержать эта порция щелочи?
- Вычислите количество вещества, которое составляют 7,4 мг гидроксида кальция.
 Сколько ионов каждого вида будет содержать эта порция щелочи?


Домашнее задание

- □ Параграф 19
- □ Упражнения 2-6 (стр. 101-102)

РАСТВОРИМОСТЬ СОЛЕЙ, КИСЛОТ И ОСНОВАНИЙ В ВОДЕ

Ионы	H,	NH,	K*	Na'	Ag	Ba	Ca2*	Mg³*	Zn2*	Cu2*	Pb"	Fe2*	Fe3*	Αl,
OH.		P	P	P		P	M	M	H	H	M	H	H	H
NO;	P	P	P	P	P	P	P	P	P	P	P	P	P	P
CF	P	P	P	P	H	P	P	P	P	P	M	P	P	P
Г	P	P	P	P	H	P	P	P	P		M	P	-	P
S*-	P	P	P	P	H	P	ij	I	Ħ	H	H	H	H	
SO ₃ -	P	P	P	P	M	M	M	P	M	1	H	M		
SO ₄ -	P	P	P	P	M	H	M	P	P	P	M	P	P	P
CO3-	P	P	P	P	M	H	H	M	M		H	H		
SiO ₃	H	-	P	P	-	H	H	H	H	-	H	H	I	
PO ₄	P	_	P	P		H	H	H	H	H	H	H	H	H
HCO;	P	-	P	P		P	P	P	_		-	-		
H,PO,	P	P		P	P	P	P	P	P	P		-		

малорастворимые (от 0,001 г до 1 г в 100 г воды)

нерастворимые (меньше 0,001 г в 100 г поды)

разлагающиеся или не существуют