МКОУ СОШ ШКОЛА 3 Кабардино- Балкарская Республика г.Терек

Энергетический обмен

Выполнил: Учиник 5 класса Биологии МОБУ СОШ № 3 Макоев.Э.Р

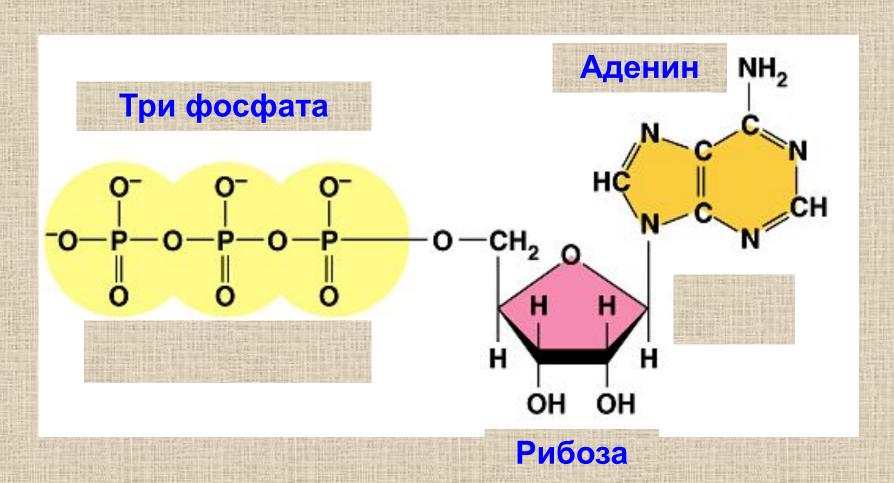
Терек 2020 г

Метаболизм (обмен веществ)

Реакции расщепления высокомолекулярных соединений, сопровождаются выделением энергии

Катаболизм

Энергетический обмен


Диссимиляция

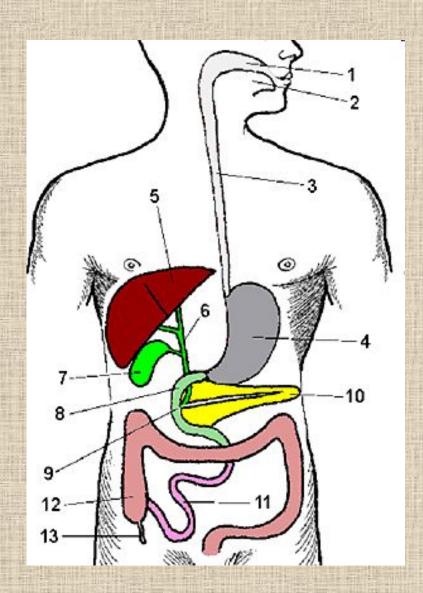
Все процессы биосинтеза, сопровождаются поглощением энергии

Энергетический обмен (диссимиляция)

— это совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии

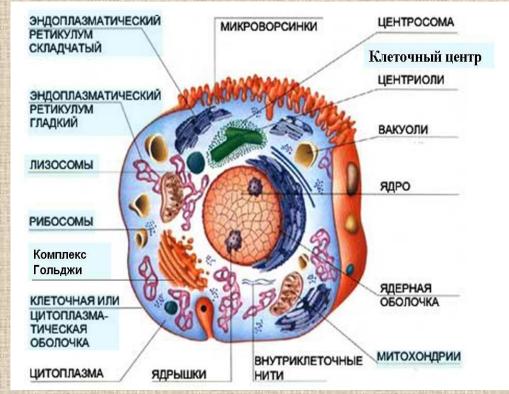
АТФ – универсальный источник энергии в клетке, нуклеотид

АТФ в цифрах


- •Время жизни несколько секунд
- Человек затрачивает ~ 2 300 ккал энергии в сутки.
- •Для этого надо расщепить 166 кг АТФ
- •На самом деле в организме содержится только ~ 50 г АТФ
- •Поэтому каждая молекула АТФ должна вновь синтезироваться 166 кг : 50 г ≈ 3320 раз в сутки.

Субстрат для клеточного дыхания

- •Большинство клеток используют в первую очередь именно углеводы.
- •Жиры. Жиры составляют «первый резерв».
- •Белки. Но они выполняют ряд других важных функций.


Этапы энергетического обмена:

- 1. Подготовительный
- 2. Гликолиз
- (бескислородное
- окисление)
- 3. Дыхание
- (кислородное окисление)

Где происходит:

- •Пищеварительная система
- •Лизосомы в клетках

Первый этап Подготовительный

I

ферментативное расщепление сложных органических веществ до простых:

белки-до аминокислот, полисахориды-до моносахаридов, жиры-до глицерина и жирных кислот

Результат этапа

Энергия не запасается, а выделяется только в тепловой форме

Второй этап Бескислородное окисление

Гликолиз

- неполное расщепление
- анаэробное дыхание
- брожение

Полисахариды **†**

Глюкоза -

центральная молекула клеточного дыхания

происходит в цитоплазме

Клетка (под действием ферментов клеточных мембран)

Результат этапа:

из одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80 кДж запасается в связях АТФ.

60%
выделяется
в виде
тепла

40% идет на синтез АТФ

Брожение – анаэробное дыхание

ГЛЮКОЗА

ГЛИКОЛИЗ

2 ATO

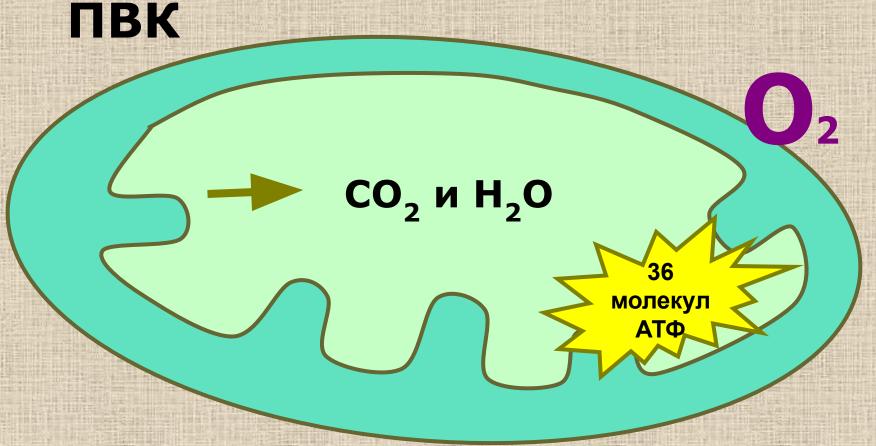
БРОЖЕНИЕ

Молочная кислота молочнокислое

Животные, бактерии

Этиловый спирт спиртовое

Растения, дрожжи


Выводы:

Синтез АТФ в процессе гликолиза не нуждается в мембранах. Он идёт даже в пробирке, если имеются все необходимые субстраты и ферменты

Третий этап Кислородное расщепление:

полное расщепление пировиноградной кислоты, происходит при обязательном присутствии кислорода

Где происходит:

Митохондрия: под действием ферментов митохондриальных мембран (необходимое условие – целостность мембран)

Выводы:

Для осуществления кислородного процесса необходимо наличие неповреждённых митохондриальных мембран

Выводы:

Расщепление в клетке
1 молекулы глюкозы до
СО2
и H2O обеспечивает синтез
38 молекул АТФ