# АЛГОРИТМЫ. АЛГОРИТМИЗАЦИЯ.

# ПОНЯТИЕ АЛГОРИТМА И ЕГО СВОЙСТВА

<u>Алгоритм</u> (Мухаммеда ибн Муса ал-Хорезми (Alhorithmi), 783—850 гг.) — заранее заданное, понятное и точное предписание возможному исполнителю совершить определенную последовательность действий для получения решения задачи за конечное число шагов.

Алгоритмы предназначены для выполнения некоторым исполнителем.

<u>Исполнитель алгоритма</u> — абстрактная или реальная система, способная выполнить действия, предписанные алгоритмом.



Исполнителя характеризуют: Среда;

Элементарные действия;

Система команд;

Отказы.

# СВОЙСТВА АЛГОРИТМА

#### Формальность

(понятность для исполнителя) — исполнитель алгоритма должен понимать, как его выполнять.

#### Дискретность

(прерывность, раздельность) —каждый алгоритм состоит из отдельных законченных действий.

#### Определенность

(детерминированность, точность) –каждый шаг алгоритма должен не допускать различных толкований.

#### Результативность

(конечность) — алгоритм должен завершаться за конечное число шагов.

#### Массовость —

применимость алгоритма ко всем задачам рассматриваемого типа.

# ФОРМЫ ПРЕДСТАВЛЕНИЯ АЛГОРИТМОВ

# Формы

<u>Словесная</u> (представляет структуру алгоритма на естественном языке)

<u>Графическая</u> (изображение из графических символов – блок-схема)

<u>Псевдокод</u> (описание структуры алгоритма на естественном, частично формализованном языке)

<u>Программа</u> (описание структуры алгоритма на языке алгоритмического программирования)

#### СЛОВЕСНОЕ ОПИСАНИЕ АЛГОРИТМА

**Словесное описание** алгоритма представляет собой запись алгоритма в произвольной форме на естественном, например, русском языке.

#### Достоинства

- Возможность лучше описать отдельные операции;
- Можно описать любой алгоритм.

#### Недостатки

- Многословность;
- Отсутствие наглядности;
- Строго не формализуем;
- Неоднозначность толкования.

# ПРИМЕР: НАЙТИ НАИБОЛЬШЕЕ ЧИСЛО ИЗ ТРЕХ ЗАДАННЫХ (A, B, C) (СЛОВЕСНОЕ ОПИСАНИЕ)

#### Сравнить а и b.

• Сравнить первое и второе число ( а и b). Переменной *тах* присвоить значение переменной, содержащей большее значение.



#### Сравнить тах и с.

• Сравнить значение переменной *тах* с третьим числом (с). Если значение с окажется больше, чем *тах*, то присвоить *тах* значение третьего числа. Если же значение *тах* окажется больше, то выполняется след. шаг.



#### тах результат.

• Принять max в качестве результата.

#### ГРАФИЧЕСКОЕ ОПИСАНИЕ АЛГОРИТМА

**Блок-схема** – описание структуры алгоритма с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения отдельных инструкций.

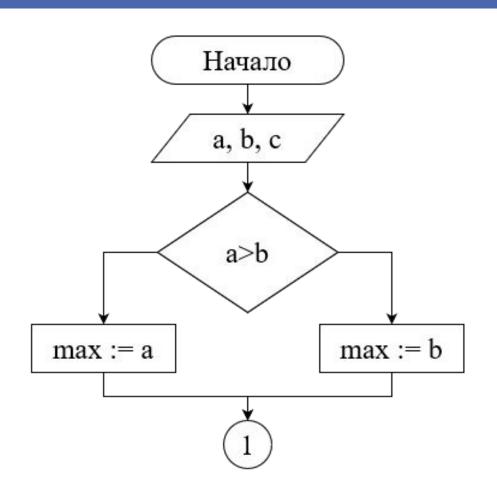
#### Достоинства

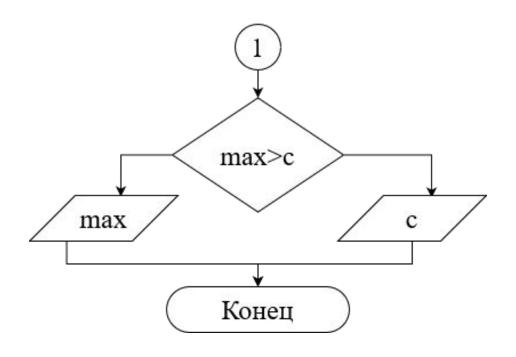
- Наглядность;
- Наиболее используемый способ.

#### Недостатки

• Может возникнуть сложность с описанием некоторых операций.

В блок-схеме каждому типу действия соответствует определенная геометрическая фигура, называемая блочным символом.


Блочные символы соединяются **линиями переходов**, которые определяют очередность выполнения действий.


# ОСНОВНЫЕ КОНСТРУКЦИИ, ИСПОЛЬЗУЮЩИЕСЯ ДЛЯ ПОСТРОЕНИЯ БЛОК-СХЕМ

| Название символа  | Обозначение и пример заполнения                     | Пояснение                                                     |
|-------------------|-----------------------------------------------------|---------------------------------------------------------------|
| Пуск-останов      | Начало                                              | Начало, конец<br>алгоритма; вход и<br>выход в<br>подпрограмму |
| Ввод-вывод        | Ввод а, в                                           | Ввод-вывод в общем<br>виде                                    |
| Процесс           | x=(a-b)/sin(1)                                      | Вычислительное действие или последовательность действий       |
| Решение (условие) | Да а <b td="" нет<=""><td>Проверка условий</td></b> | Проверка условий                                              |

| Модификация                 | i=1, 50, 2           | Начало цикла                                               |
|-----------------------------|----------------------|------------------------------------------------------------|
| Предопределенный<br>процесс | Расчет<br>параметров | Вычисление по<br>подпрограмме,<br>стандартной<br>программе |
| Документ                    | Печать а             | Вывод результатов на<br>печать                             |
| Соединитель                 | 1                    | Соединение<br>прерванных линий<br>переходов                |

# ПРИМЕР: НАЙТИ НАИБОЛЬШЕЕ ЧИСЛО ИЗ ТРЕХ ЗАДАННЫХ (A, B, C) (ГРАФИЧЕСКОЕ ОПИСАНИЕ)





# ПСЕВДОКОД

**Псевдокод** – описание структуры алгоритма на естественном, частично формализованном языке. Представляет собой систему обозначений и правил, используемую для единообразной записи алгоритмов.

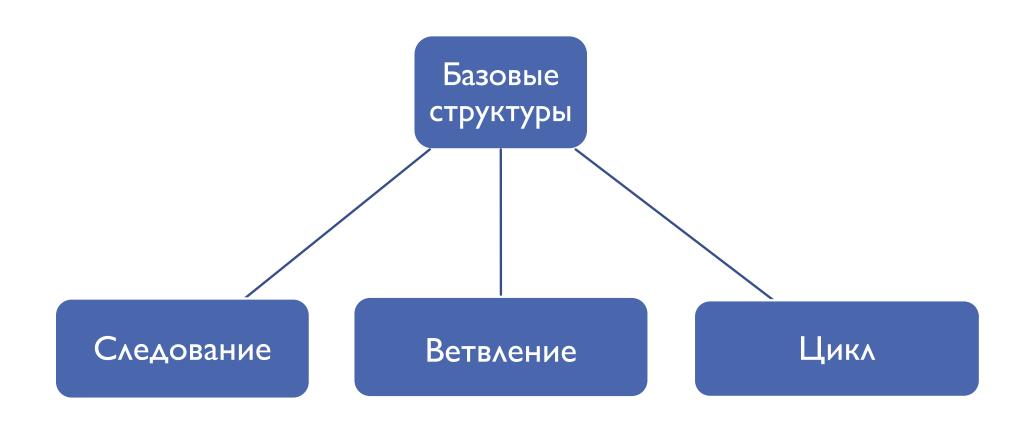
В псевдокоде не приняты строгие синтаксические записи, но используются некоторые формальные конструкции и общепринятая математическая символика.

В псевдокоде есть служебные слова смысл которых строго определен.

# АЛГОРИТМИЧЕСКИЙ ЯЗЫК СЛУЖЕБНЫЕ СЛОВА

| Служебное<br>слово | Значение     |  |
|--------------------|--------------|--|
| алг                | алгоритм     |  |
| арг                | аргумент     |  |
| рез                | результат    |  |
| нач                | начало       |  |
| кон                | конец        |  |
| цел                | целый        |  |
| вещ                | вещественный |  |
| сим                | символьный   |  |
| лит                | литерный     |  |
| ЛОГ                | логический   |  |
| таб                | таблица      |  |
| нц                 | начало цикла |  |
| кц                 | конец цикла  |  |
| длин               | длина        |  |

| Служебное слово |       |  |
|-----------------|-------|--|
| дано            | да    |  |
| надо            | нет   |  |
| если            | при   |  |
| то              | выбор |  |
| иначе           | ввод  |  |
| все             | вывод |  |
| пока            | утв   |  |
| для             |       |  |
| от              |       |  |
| до              |       |  |
| знач            |       |  |
| И               |       |  |
| или             |       |  |
| не              |       |  |


# КОМАНДЫ АЛГОРИТМИЧЕСКОГО ЯЗЫКА

- Команда присваивания: А:=В
- Команды ввода и вывода:
  - ввод имена\_переменных;
  - вывод имена\_переменных, выражения, текст
- Команды **если** и **выбор**: применяются для организации ветвлений
- Команды для и пока: применяются для организации циклов

# ПРИМЕР: НАЙТИ НАИБОЛЬШЕЕ ЧИСЛО ИЗ ТРЕХ ЗАДАННЫХ (A, B, C) (ПСЕВДОКОД)

```
алг тах (арг цел а,b,c, рез цел тах)
нач
   ввод а, b, с
   если а>в
      To max:=a
      иначе тах:=b
   BCe
   если тах>с
      то вывод тах
      иначе вывод с
   BCe
КОН
```

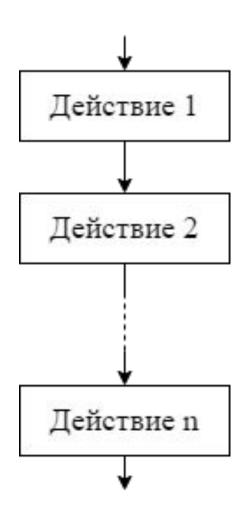
# БАЗОВЫЕ АЛГОРИТМИЧЕСКИЕ СТРУКТУРЫ



# БАЗОВАЯ СТРУКТУРА «СЛЕДОВАНИЕ»

Данная структура состоит из последовательно выполняющихся блоков.

Примером является стандартный процесс вычисления: ввод значений, вычисление по формуле, вывод.


### Алгоритмический язык:

Действие 1

Действие 2

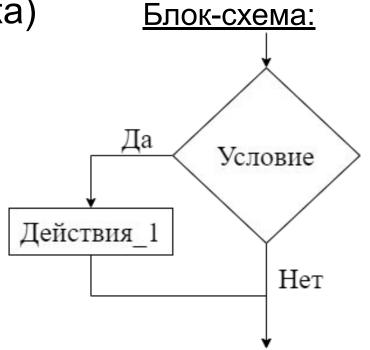
. . .

Действие n



#### БАЗОВАЯ СТРУКТУРА «ВЕТВЛЕНИЕ»

Имеет 4 формы представления. Позволяет выбрать один из альтернативных вариантов.


# Форма 1. если-то (неполная развилка)

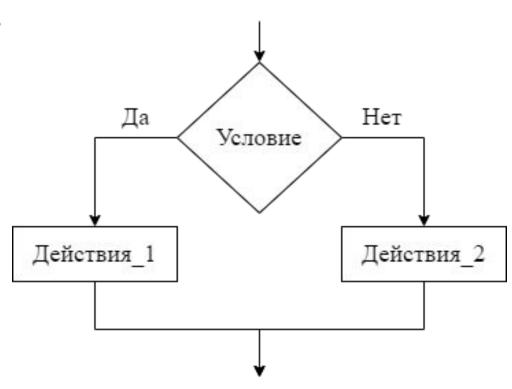
Если «условие» верно , тогда выполнить «действия 1», иначе ничего не выполнять

### Алгоритмический язык:

если условие то действия\_1

все

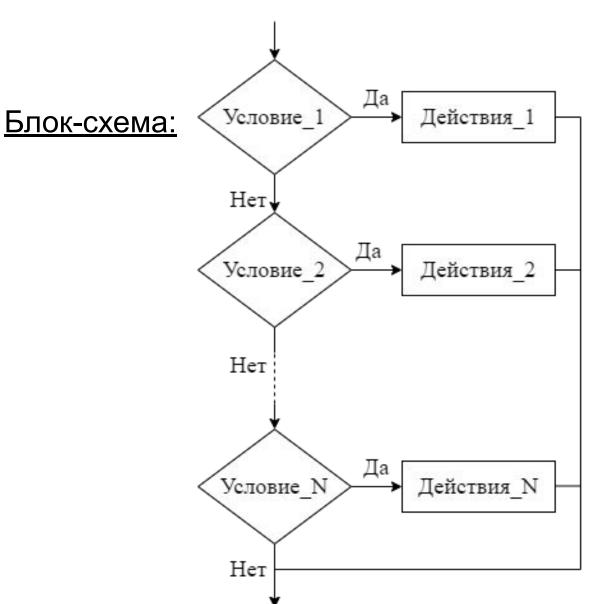



# Форма 2. если-то-иначе (полная развилка)

Если «условие» верно, тогда выполнять «действия 1» (линия Да), иначе выполнять «действия 2» (линия Нет).

### Алгоритмический язык:

```
если условие то действия_1 иначе действия_2 все
```


#### Блок-схема:

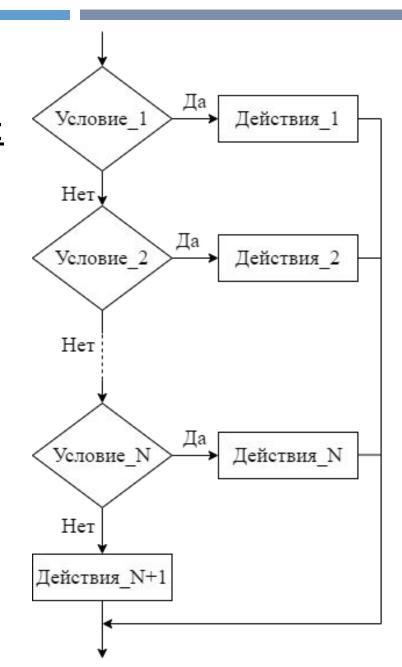


# Форма 3. Выбор

# Алгоритмический язык:

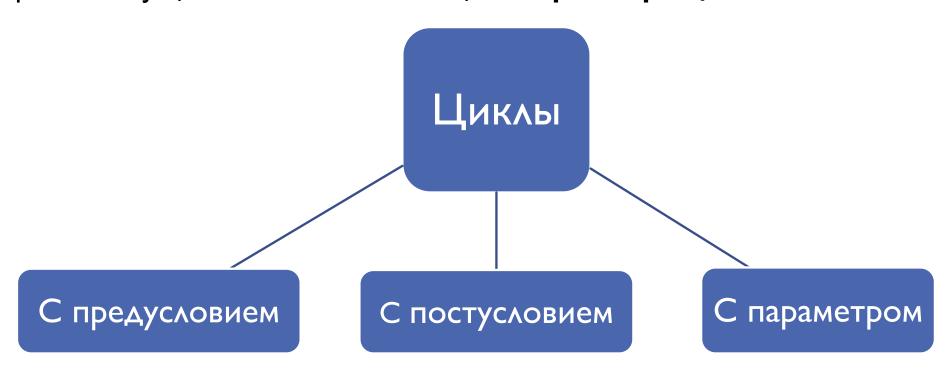
```
выбор
при условие_1: действия_1
при условие_2: действия_2
...
при условие_N: действия_N
все
```




# Форма 3. Выбор-иначе

# Алгоритмический язык:

**BCe** 


```
выбор
при условие_1: действия_1
при условие_2: действия_2
...
при условие_N: действия_N
иначе действия_N+1
```

### Блок-схема:

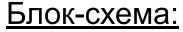


# БАЗОВАЯ СТРУКТУРА «ЦИКЛ»

С помощью данной структуры выполняется одно и то же действие. Повторение осуществляется с помощью параметра цикла.



# Форма 1. Цикл с предусловием (цикл типа пока)


### Алгоритмический язык:

**нц пока** условие тело цикла

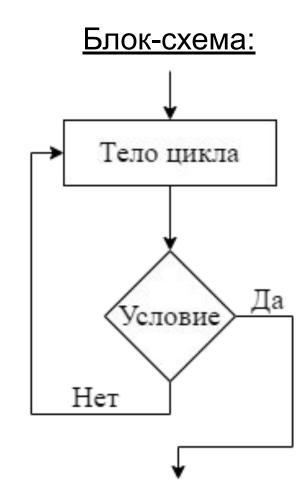
КЦ

В циклах с предусловием сначала проверяется условие, если оно истинно, то выполняются команды из тела цикла.

Выполнение прекращается, когда условие становится ложным.






# Форма 2. Цикл с постусловием (цикл типа до)

# Алгоритмический язык:

тело цикла кц при условие

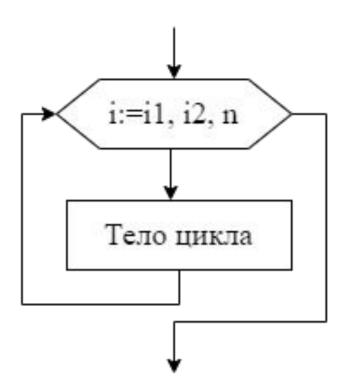
В циклах с предусловием сначала выполняется действие (поэтому данный тип цикла выполняется хотя бы раз), а затем проверяется условие.

Выполнение прекращается, когда условие становится истинным.



# Форма 3. Цикл с параметром (цикл типа для)

### Алгоритмический язык:


**нц для** і **от** і1 **до** і2 тело цикла

КЦ

Счетчику цикла і присваивается начальное значение і1 и выполняется тело. После счетчик і увеличивается на шаг **n** и проверяется условие і<=i2.

Цикл завершается как только счетчик цикла **i** становится больше **i2**.

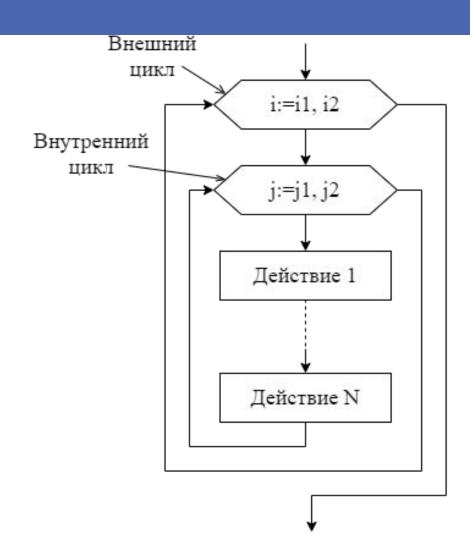
#### Блок-схема:



# ИТЕРАЦИОННЫЕ ЦИКЛЫ

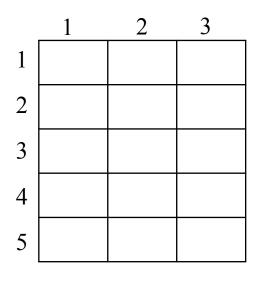
**Итерационные циклы** – это циклы, в которых к решению приходят путем последовательного приближения к искомому результату.

Особенностью данного цикла является то, что заранее число повторений команд неизвестно.


Для корректной работы необходимо обеспечивать достижение условия выхода из цикла, иначе произойдет «зацикливание».

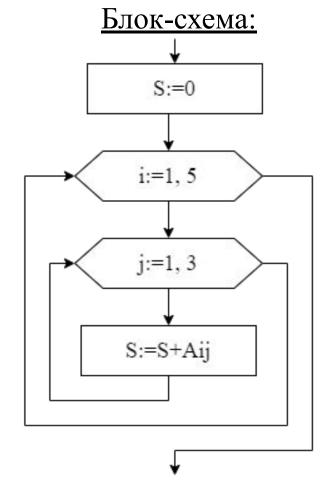
Данные циклы используются в итерационных алгоритмах.

# ВЛОЖЕННЫЕ ЦИКЛЫ


Вложенный цикл — это цикл, находящийся внутри другого цикла. Цикл, содержащий в себе другой цикл называют внешним, а цикл, содержащийся в теле другого цикла — внутренним.

Глубина вложения циклов (количество циклов вложенных в друг друга) может быть различной.




# ПРИМЕР: ВЫЧИСЛИТЬ СУММУ ЭЛЕМЕНТОВ ЗАДАННОЙ МАТРИЦЫ А(5,3). (ВЛОЖЕННЫЕ ЦИКЛЫ)

#### Матрица А



#### Алгоритмический язык:

S:=0 нц для і от 1 до 5 нц для ј от 1 до 3 S:=S+A[i,j] кц

