

Того, кто не задумывается о далеких трудностях, поджидают близкие неприятности

Конфуций

Древний мыслитель и философ Китая. Его учение оказало глубокое влияние на жизнь Китая и Восточной Азии, став основой философской системы, известной как конфуцианство.

(551 - 479 г. до н.э.)

Лекция по дисциплине

«Термодинамика и теплопередача»

«Основные положения теплопроводности»

Демонстрируется видеоролик «Теплопроводность стройматериалов» - 2 мин.

1. Температурное поле

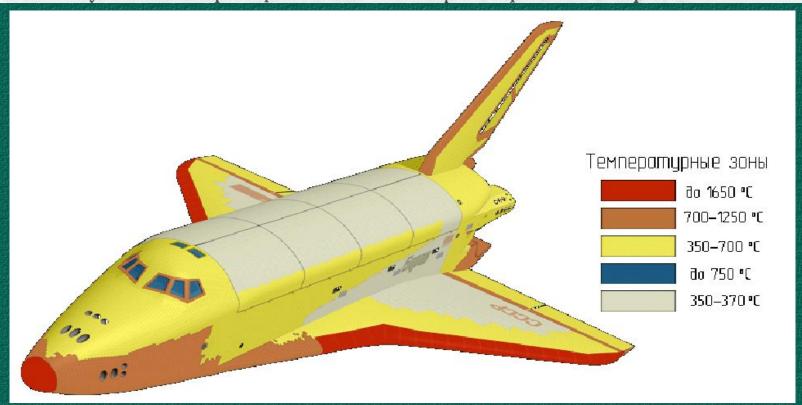
Изотропным

называют тело, обладающее одинаковыми физическими свойствами по всем направлениям. При нагреве такого тела температура его в различных точках изменяется во времени и теплота распространяется от мест с более высокой температурой к местам с более низкой температурой. Из этого следует, что в общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры t как в пространстве, так и во времени:

$$t = f(x, y, z, \tau),$$
 (22-1)

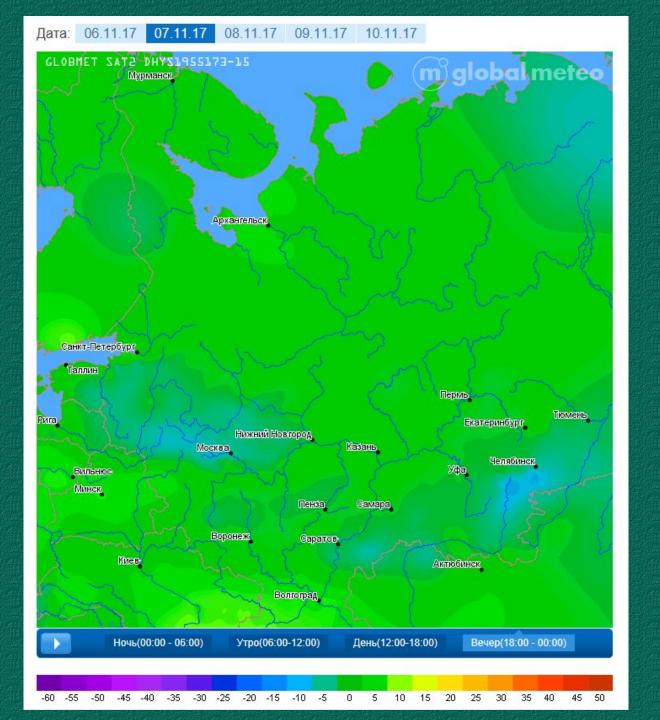
где x, y, z — координаты точки; τ — время.

В математической физике температурным полем называют совокупность значений температуры в данный момент времени для всех точек изучаемого пространства, в котором протекает процесс.



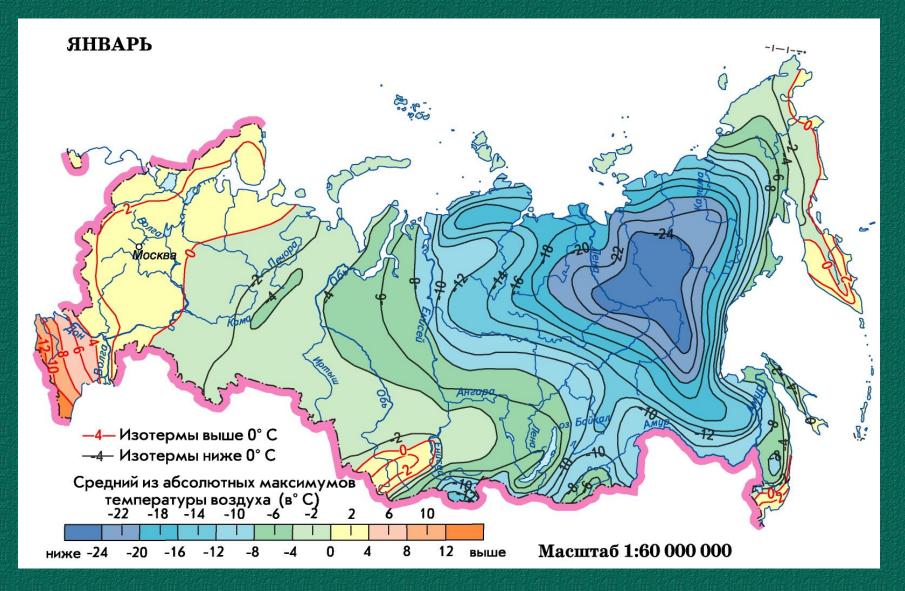
На практике встречаются задачи, когда температура тела является функцией одной координаты, тогда уравнение одномерного температурного поля для режима: стационарного

t = f(x); $\partial t/\partial \tau = 0$ и $\partial t/\partial y = \partial t/\partial z = 0$;

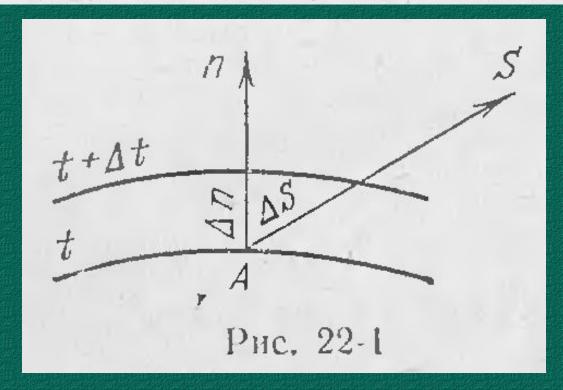


2. Градиент температуры

Средняя температура воздуха за январь



Если соединить точки тела с одинаковой температурой, то получим поверхность равных температур, называемую изотермной. Изотермные поверхности между собой никогда не пересекаются. Они либо замы-каются на себя, либо кончаются на границах тела.



grad
$$t = \lim |\Delta t/\Delta n|_{\Delta n \to 0} = \partial t/\partial n$$
.

(22-5)

Градиент температуры есть вектор, направленный по нормали к изотермной поверхности в сторону возрастания температуры и численно равный частной производной от температуры по этому направлению. За положительное направление градиента принимается направление возрастания температур.

3. Основной закон теплопроводности

Для распространения теплоты в любом теле или пространстве необходимо наличие разности температур в различных точках тела. Это условие относится и к передаче теплоты теплопроводностью, при которой градиент температуры в различных точках тела не должен быть равен нулю.

Связь между количеством теплоты dQ в $\partial \mathcal{H}$, проходящим через элементарную площадку dF, расположенную на изотермной поверхности, за промежуток времени $d\tau$ и градиентом температуры устанавливается

гипотезой Фурье, согласно которой

$$dQ = -\lambda dF \operatorname{grad} t \ d\tau = -\lambda dF d\tau \ (\partial t/\partial n).$$
 (22.6)

Минус в правой части показывает, что в направлении теплового потока температура убывает и величина grad t является величиной отрицательной. Множитель пропорциональности λ называют коэффициентом теплопроводности. Уравнение (22-6) посит название основного уравнения теплопроводности, или закона Фурье. Справедливость гипотезы Фурье подтверждается опытами.

Количество теплоты, проходящей через единицу изотермной поверхности в единицу времени, называют плотностью теплового потока, или вектором плотности теплового потока, имеющим размерность $(sm/m^2]$

$$q = -dQ/(dFd\tau)$$
, или $q = -\lambda (\partial t/\partial n)$. (22-7)

Вектор плотности теплового потока направлен по нормали к изотермной поверхности в сторону убывания температуры. Векторы q и grad t лежат на одной прямой, но направлены в противоположные стороны.

Количество теплоты, прошедшей в единицу времени через произвольную поверхность F, называют тепловым потоком, имеющим развольность F

мерность [вт]

$$Q = \int_{F} q \, dF = -\int_{F} \lambda \, dF \, (\partial t / \partial n). \tag{22-8}$$

4. Коэффициент теплопроводности

Коэффициент теплопроводности λ есть физический параметр вещества, характеризующий его способность проводить теплоту. Размерность коэффициента теплопроводности определяется из уравнения (22-8):

$$\lambda = -\frac{Q}{F(\partial t/\partial n)}.$$

Размерность
$$\lambda = \frac{вm}{m^2 \cdot \epsilon pa\partial/m} = вm/(m \cdot \epsilon pa\partial).$$

Как показывают опыты, для многих материалов зависимость коэффициента теплопроводности от температуры может быть принята липейной:

$$\lambda = \lambda_0 \left[1 + b \left(t - t_0\right)\right],$$

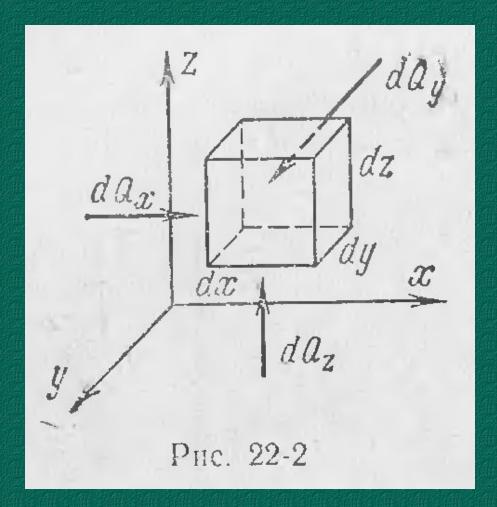
где λ_0 — коэффициент теплопроводности при температуре t_0 , °C; t — температура, °C; b — температурный коэффициент, определяемый опытным путем.

Числовые значения коэффициентов теплопроводности и температуропроводности при различных плотностях, температурах и теплоемкостях для расчетов берутся из справочных таблиц (табл. 22-1).

Таблица 22-1

				таолина 22-1	
Наименование матерпала	ρ, κε/м ³	t, °C	λ, BT/(M× ×ερα∂)	с, кдэк/ (кг. град)	а·10°, м²/сек
Асбест листовой	770 2110 2300 1850 800 1700 1400 1800 1900	30 20 20 450 20 17 20 0	0,1163 0,6978 0,279 1,035 0,207 0,657 0,186 0,768 0,814	0,816 2,09 1,13 1,089 1,758 2,01 1,31 0,879 0,837	0,186 0,156 0,622 0,051 0,147 0,192 0,103
Лед	920 200 1000÷ ÷2500	0 50 100	2,25 0,0465 1,314÷ ÷3,14	2,26 0,921	1,08 0,253
Песок сухой	1500 200 1200 1600 290	20 27 0 0 20	0,326 0,0419 0,169 0,582 0,582	0,795 1,884 1,382 1,256 0,879	2,74 0,117 0,098 0,278 2,28
Снег	560 2500 200 1000 250	20 0 0 100	0,465 0,744 0,037 0,29 0,0698	2,09 0,67 0,67 0,754	0,4 0,444 0,278 —
Штукатурка известковая	1600 2670 8600 8800 9000	0 0 0 0 20	0,698 204 85 384 58	0,837 0,921 0,377 0,381 0,461	86,7 33,8 112,5 17,8

5. Дифференциальное уравнение теплопроводности



Через площадку $dx \cdot dy$ за времи $d\tau$, согласно уравнению Фурье, проходит следующее количество теплоты:

$$dQ_{z1} = -\lambda dx \cdot dy d\tau \, (\partial t/\partial z)$$

(grad t взят в виде частной производной, так как предполагается зависимость температуры не только от x, по и от других координат и времени).

Через противоположную грань на расстоянии dz отводится количество теплоты, определяемое из выражения

$$dQ_{z2} = -\lambda \, dx \cdot dy \, d\tau \, \frac{\partial}{\partial z} \left(t + \frac{\partial t}{\partial z} \, dz \right),$$

где $t - -\frac{dt}{dz} dz$ — температура второй грани, а величина $\frac{dt}{dz} dz$ определяет изменение температуры в направлении z.

Полное приращение внутренней энергии в параллелепипеде равно

$$dQ = dQ_x + dQ_y + dQ_z = \lambda dx \cdot dy \cdot dz \, d\tau \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right). \tag{a}$$

Величину $\left(\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}\right)$ называют оператором Лапласа и обычно обозначают сокращенно ∇^2 (знак ∇ читается «набла»); величину $\frac{\lambda}{c\rho}$ называют коэффициентом температуропроводности и обозначают буквой a. При указанных обозначениях дифференциальное уравнение теплопроводности принимает вид

$$\partial t/\partial \tau = a \nabla^2 t. \tag{22-10}$$

Уравнение (22-10) называется дифференциальным уравнением теплопроводности, или уравнением Фурье, для трехмерного нестационарного температурного поля при отсутствии внутренних источников теплоты. Оно является основным при изучении вопросов нагревания и охлаждения тел в процессе передачи теплоты теплопроводностью и устанавливает связь между временным и пространственным изменениями температуры в любой точке поля.

6. Теплопроводность через однослойную стенку

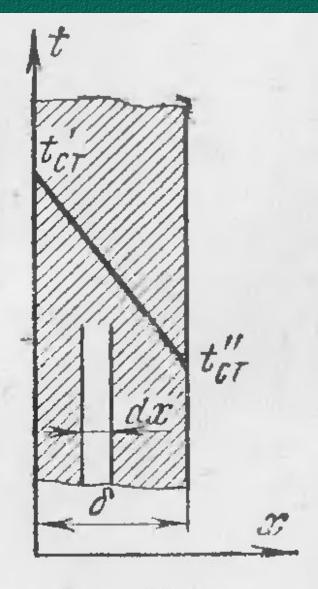


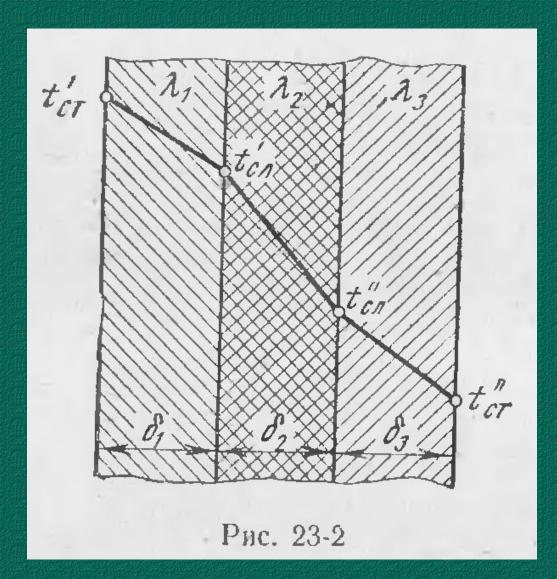
Рис. 23-1

Зная удельный тепловой поток, можно вычислить общее количество теплоты, которое передается через поверхность стенки F за время τ

$$Q = \frac{\lambda}{\delta} F \left(t'_{\text{cr}} - t''_{\text{cr}} \right) \tau. \tag{23-3}$$

Количество теплоты, передаваемое теплопроводностью через плоскую стенку, прямо пропорционально коэффициенту теплопроводности стенки λ ее площади F, промежутку времени τ , разности температур на наружных поверхностях стенки $(t'_{\text{ст}} - t''_{\text{ст}})$ и обратно пропорционально толщине стенки δ . Тепловой поток зависит не от абсолютного значения температур, а от их разности $t'_{\text{ст}} - t''_{\text{ст}} = \Delta t$, называемой температурным напором.

7. Теплопроводность через многослойную стенку



Тепловой поток для каждого слоя:

$$Q = \frac{\lambda_1}{\delta_1} F(t'_{cT} - t'_{cS}); \quad Q = \frac{\lambda_2}{\delta_2} F(t'_{cS} - t''_{cS});$$

$$Q = \frac{\lambda_3}{\delta_3} F(t''_{cS} - t''_{cT}).$$

Решая эти уравнения относительно разности температур и складывая, получаем:

$$Q = [F(t'_{cr} - t''_{cr})] / \sum_{i=1}^{i=n} \frac{\delta_i}{\lambda_i}.$$
 (23-9)

Отношение $\frac{\delta}{\lambda}$ называют термическим сопротивлением слоя, а величину $\sum_{i=1}^{i=n} \frac{\delta_i}{\lambda_i}$ — полным термическим сопротивлением многослойной плоской стенки.

Температуры в ° С между отдельными слоями сложной стенки равны:

$$t'_{\text{сл}} = t'_{\text{ст}} - \frac{Q}{F} \frac{\delta_1}{\lambda_1};$$
 $t''_{\text{сл}} = t'_{\text{сл}} - \frac{Q}{F} \frac{\delta_2}{\lambda_2};$
 $t''_{\text{сл}} = t'_{\text{сл}} - \frac{Q}{F} \frac{\delta_3}{\lambda_3} \text{ н. т. д.}$
 $(23-12)$

Температура в каждом слое стенки при постоянном коэффициенте теплопроводности изменяется по линейному закону, а для многослойной плоской стенки температурный график представляет собой ломаную линию.

8. Теплопроводность через однослойную цилиндрическую стенку

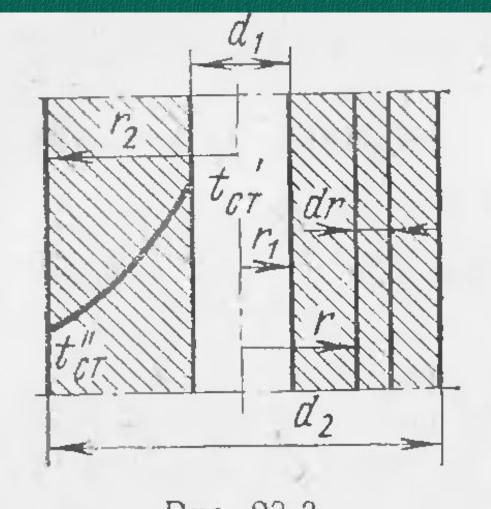


Рис. 23-3

Тепловой поток может быть отнесен к единице длины трубы q_l и к l m^2 внутренней или внешней поверхности q_1 и q_2 . Тогда расчетные формулы принимают вид:

$$q_{l} = \frac{Q}{l} = \frac{2\pi\lambda \left(t'_{\text{cr}} - t''_{\text{cr}}\right)}{\ln d_{2}/d_{1}};$$
 (23-14)

$$q_1 = \frac{Q}{\pi d_1 l} = \frac{2\lambda \left(t'_{\text{CT}} - t''_{\text{CT}}\right)}{d_1 \ln d_2 / d_1}; \qquad (23-15)$$

$$q_2 = \frac{Q}{\pi d_2 l} = \frac{2\lambda (t'_{\text{CT}} - t''_{\text{CT}})}{d_2 \ln d_1/d_2}.$$
 (23-16)

Задание на самостоятельную работу

- 1. Повторить материал по конспекту.
- 2. По учебнику проработать материал на стр. 299-312.
- 3. Знать основные термины и определения термодинамики. Планируется автоматизированный опрос.

Литература: В.В Нащокин. Техническая термодинамика и теплопередача.

– М. Высшая школа, 1975 – 496 с.

СПАСИБО ЗА ВНИМАНИЕ