
Java
Functional
Interfaces

SoftServe Confidential

Agenda

1. Functional Interface

2. Lambda Expression

3. Built-in Functional Interfaces in Java
o Function
o Predicate
o UnaryOperator
o BinaryOperator
o Supplier
o Consumer

SoftServe Confidential

Functional Interfaces

A functional interface in Java is an interface that contains only a single abstract
(unimplemented) method.

A functional interface can contain default and static methods which do have an
implementation, in addition to the single unimplemented method.

public interface MyFunctionalInterface {
 public void execute();
}

SoftServe Confidential

Functional Interfaces

Normally a Java interface does not contain implementations of the methods it declares.

But it can contain implementations
• in default methods,
• or in static methods

public interface MyFunctionalInterface2{
 public void execute();

 public default void print(String text) {
 System.out.println(text);
 }

 public static void print(String text, PrintWriter writer) throws IOException {
 writer.write(text);
 }
}

SoftServe Confidential

@FunctionalInterface Annotation

@FunctionalInterface annotation is used to ensure that the
functional interface can’t have more than one abstract method.

In case more than one abstract methods are present, the
compiler flags an ‘Unexpected @FunctionalInterface
annotation’ message.

However, it is not mandatory to use this annotation.

SoftServe Confidential

Lambda expressions

lambda expressions are added in Java 8 and provide below

functionalities.

• Enable to treat functionality as a method argument, or code

as data.

• A function that can be created without belonging to any

class.

• A lambda expression can be passed around as if it was an

object and executed on demand.

SoftServe Confidential

Syntax of lambdas

where lambda operator can be:
Zero parameter:

One parameter:–

It is not mandatory to use parentheses, if the type of that variable can be inferred from the
context
Multiple parameters :

lambda operator -> body

(p) -> {System.out.println("One parameter: " + p); return p;}

() -> System.out.println("Zero parameter lambda");

(p1, p2) -> System.out.println("Multiple parameters: " + p1 + ", " + p2);

SoftServe Confidential

 Lambda Expression

A Java functional interface can be implemented by a Java Lambda Expression.

A Java lambda expression implements a single method from a Java interface.

In order to know what method the lambda expression implements, the interface can only
contain a single unimplemented method. (The interface must be a Java functional
interface.)

MyFunctionalInterface lambda = () -> {
 System.out.println("Executing...");
}

Built-in
Functional
Interfaces in
Java

SoftServe Confidential

Function

The Function interface (java.util.function.Function) represents a function (method)
that takes a single parameter and returns a single value.

The Function interface actually contains a few extra methods in addition to the method
shown above, but since they all come with a default implementation, you do not have to
implement these extra methods.

public interface Function<T,R> {

 public <R> apply(T parameter);
}

SoftServe Confidential

Function

The only method you have to implement to implement the Function interface is the
apply() method:

public class AddThree implements Function<Long, Long> {

 @Override
 public Long apply(Long aLong) {
 return aLong + 3;
 }
}

SoftServe Confidential

Function

An example of using the above AddThree class:

o First this example creates a new AddThree instance and assigns it to a Function
variable.

o Second, the example calls the apply() method on the AddThree instance.

o Third, the example prints out the result (which is 7).

Function<Long, Long> adder = new AddThree();
Long result = adder.apply((long) 4);
System.out.println("result = " + result);

SoftServe Confidential

Function

You can also implement the Function interface using a Java lambda expression:

The Function interface implementation is now inlined in the declaration of the
adderLambda variable, rather than in a separate class.

Function<Long, Long> adder = (value) -> value + 3;
Long resultLambda = adder.apply((long) 8);
System.out.println("resultLambda = " + resultLambda);

SoftServe Confidential

Predicate

The Java Predicate interface (java.util.function.Predicate) represents a simple
function that takes a single value as parameter, and returns true or false:

The Predicate interface contains more methods than the test() method, but the rest of the
methods are default or static methods which you don't have to implement.

public interface Predicate {
 boolean test(T t);
}

SoftServe Confidential

Predicate

You can implement the Predicate interface using a class, like this:

The Predicate interface contains more methods than the test() method, but the rest of the
methods are default or static methods which you don't have to implement.

public class CheckForNull implements Predicate {
 @Override
 public boolean test(Object o) {
 return o != null;
 }
}

SoftServe Confidential

Predicate

You can also implement the Java Predicate interface using a Lambda expression. Here is
an example of implementing the Predicate interface using a Java lambda expression:

This lambda implementation of the Predicate interface effectively does the same as the
implementation that uses a class.

Predicate predicate = (value) -> value != null;

SoftServe Confidential

UnaryOperator

The Java UnaryOperator interface is a functional interface that represents an operation
which takes a single parameter and returns a parameter of the same type.

The UnaryOperator interface can be used to represent an operation that takes a specific
object as parameter, modifies that object, and returns it again - possibly as part of a
functional stream processing chain.

UnaryOperator<Person> unaryOperator =
 (person) -> { person.name = "New Name"; return person;
};

SoftServe Confidential

BinaryOperator

The Java BinaryOperator interface is a functional interface that represents an operation
which takes two parameters and returns a single value. Both parameters and the return
type must be of the same type:

The Java BinaryOperator interface is useful when implementing functions that sum,
subtract, divide, multiply etc. two elements of the same type, and returns a third element
of the same type

BinaryOperator<MyValue> binaryOperator =
 (value1, value2) -> { value1.add(value2); return value1; };

SoftServe Confidential

Supplier

The Java Supplier interface is a functional interface that represents an function that
supplies a value of some sorts. The Supplier interface can also be thought of as a factory
interface.

This Java Supplier implementation returns a new Integer instance with a random value
between 0 and 1000.

Supplier<Integer> supplier = () -> new Integer((int) (Math.random() * 1000D));

SoftServe Confidential

Consumer

The Java Consumer interface is a functional interface that represents an function that
consumes a value without returning any value. A Java Consumer implementation could be
printing out a value, or writing it to a file, or over the network etc.

This Java Consumer implementation prints the value passed as parameter to it out to
System.out.

Consumer<Integer> consumer = (value) -> System.out.println(value);

SoftServe Confidential

Method Reference

• Method reference is used to refer a
method without invoking it.

• Instead of providing implementation of
a method like lambdas do, method
references refer to a method of an
existing class or object.

• Operator :: called as Method
Reference Delimiter.

Constructor reference

SoftServe Confidential

References

http://tutorials.jenkov.com/java-functional-programming/functional-interfaces.html

https://metanit.com/java/tutorial/3.16.php

https://metanit.com/java/tutorial/9.1.php

THANKS

