Д/3

□ § 19, упр. 1, 2 (пис)

Путь при прямолинейном равномерном движении

Цель урока:

- 1. Научиться определять путь пройденный телом при прямолинейном равномерном движении (двумя способами)
- 2. Научиться строить график зависимости скорости от времени
- 3. Выяснить геометрическую интерпретацию пути

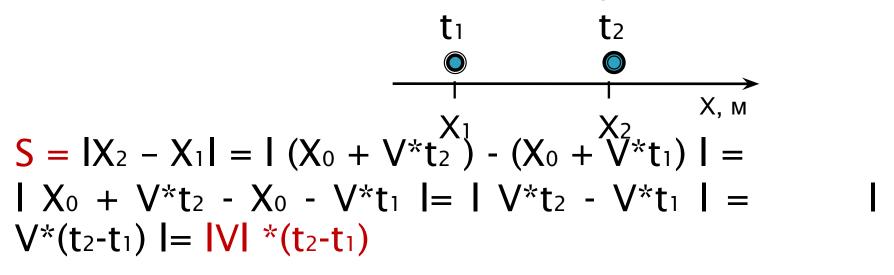
Вспомним

Разность координат в конечный и начальный моменты рассмотрения движения называется -

Прочитать: ΔX_{12} - , ΔX_{37} -, ΔX_{17} -

Направленный отрезок прямой, начало которого совпадает с начальным положением точки, а конец - с конечным положением точки называется - ...

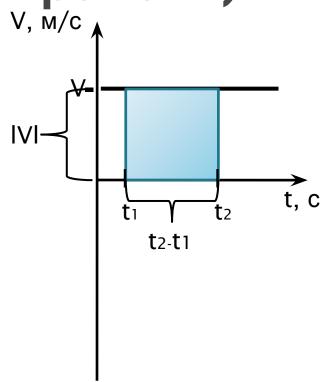
называется - ... $\overrightarrow{\Delta X}_{12}$ - , $\overrightarrow{\Delta X}_{35}$ - , $\overrightarrow{\Delta X}_{57}$


Вспомним

- Всё расстояние, пройденное точечным телом за рассматриваемый промежуток времени называется –
- \square S_{12} -,
- □ **S**₃₆ -
- □ **S**₅₆ -

Определение пути для РПД

$$X = X_0 + V^*t$$
 - закон движения тела


Определим путь на промежутке времени от t₁ до t₂ (тело движется в положительном направлении оси X):

Определение пути для РПД (по графику зависимости скорости от

времени)

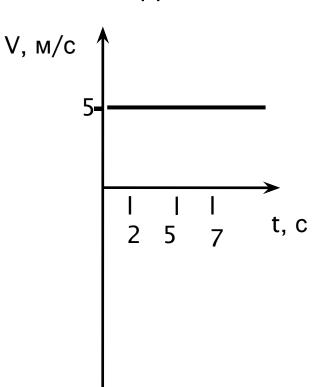
$$S_{12} = |V|*(t_2-t_1)$$

Площадь прямоугольника = a*b

Путь пройденный телом численно равен площади под графиком зависимости модуля скорости этого тела от времени

Сделаем сами

1) Дан закон движения тела: X=3м+12м/c*t Определить аналитическим способом путь пройденный телом за промежуток времени:


1В: от
$$t_1=2$$
 с до $t_2=5$ с

2B: от $t_1=1$ с до $t_2=8$ с

2) Графически определить путь пройденный телом за промежуток времени:

1В: от $t_1=2$ с до $t_2=5$ с

2B: от $t_1=5$ с до $t_2=7$ с

