Лабораторная диагностика инфекций, вызванных стафило-, стрепто-, менинго- гонококками

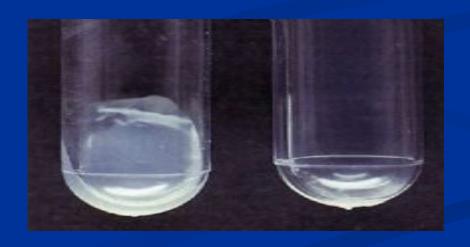
Зав. кафедрой д.м.н., профессор Г.И.Чубенко

Грамположительные кокки

входят в 17 группу (Берги) и объединяют представителей 3 семейств:

- Micrococcaceae,
- Streptococcaceae,
- Peptococcaceae.

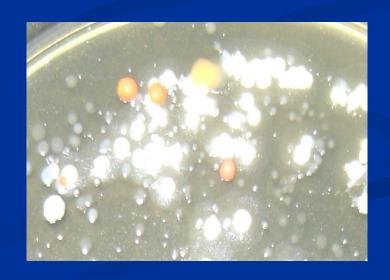
Морфология стафилококков

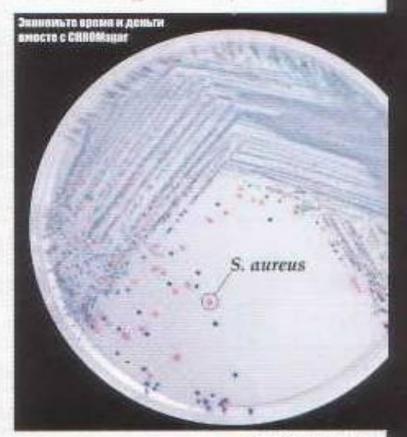

Сферические клетки диаметром 0,5- 1,5 мкм. В мазках агаровых культур — неправильными скоплениями в виде грозди винограда.

Жгутиков не имеют, спор не образуют, хорошо окрашиваются анилиновыми красителями. Грам «+».

Классификация стафилококков

по наличию фермента плазмокоагулазы:


- К коагулазоположительным относится S.aureus, S.intermedius;
- К коагулазоотрицательным- S.epidermidis, S.saprophyticus, S.hominis, S.warnerii, S.auricularis и др.


Культивирование

Факультативные анаэробы, хорошо растут на универсальных питательных средах при рН 7,0-7,5; t 35-40 оС. Добавление к среде глюкозы и крови ускоряет рост. Способны расти на среде в присутствии 15% NaCl.

CHROMagar¹¹¹ Staph aureus

Петинер Хроногенных Сред

Факторы вирулентности стафилококков

Факторы вирулентности	Эффект
Капсула	Подавление взаимодействия с фагоцитами
Белок А	Взаимодействие с Гс- фрагментом антител
Пептидогликан	Стимуляция продукции эндогенных пирогенов (эндотоксин), хемоатрактант лейкоцитов (формирование абсцессов)
Тейхоевые кислоты	Регулируют концентрации катионов на клеточной мембране, связывают фибронектин

Токсины

Альфа, бета, гамма, дельта -токсины, лейкоцидин	Токсичны для многих клеток, включая лейкоциты, эритроциты, макрофаги и фибробласты. Альфатоксин- пример порообразующего токсина
Эксфолиативный токсин- Синдром «ошпаренной кожи»	Разрушает десмосомы- межклеточные контакты в гранулярном слое эпидермиса. Суперантиген (поликлональная активация Т-лимфоцитов, стимуляция продукции цитокинов)
Токсин синдрома токсического шока	Нейротропные, вазотропные эффекты. Суперантиген

Энтеротоксины(А-F)

Нейротропные эффекты. Действие на энтероциты (стафилококковая пищевая интоксикация). Суперантиген. Устойчивы к действию пищеварительных соков.

Патогенез инфекций

- определяется действием одного или нескольких токсинов и ферментов, выделяемых стафилококками,
- воротами инфекции
- и иммунологической резистентностью организма.
 Чаще стафилококовые инфекции развиваются при сниженной естественной резистентности.

Микробиологическое исследование при стафилококковой инфекции І этап

Гной, раневое отделяемое, экссудат, моча, и др.

Бактериоскопическое исследовани

Мазок, окраска по методу Грама

Ориентировочное заключение Бактериологичес -кое исследование

Первичный посев на ЖСА и кровяной агар для получения изолированных колоний Экспресс-методы диагностики

Биохимически е и молекулярнобиологические исследования: ПЦР

Предварительный ответ Иммунохимические исследования : определение антигенов стафилококко

Предваритель -ный ответ

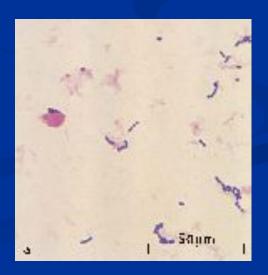
- Из иммунологических реакций применяют реакцию агглютинации латекса с латексными частицами нагруженными антителами.
 - При эпидемической необходимости проводят фаготипирование со стандартным набором из 23 бактериофагов

- Специфическая терапия специфическими иммуноглобулинами, сыворотками, бактериофагами, убитыми вакцинами.
- Специфическая профилактика анатоксином.
- Этиотропная терапия проводится антибиотиками и нитрофурановыми препаратами.

Стрептококки

Впервые выделены в 1874 г. Х.Бильротом
 Из 7 родов входящих в семейство наибольшее значение имеет роды: Streptococcus, Enterococcus.

Большое значение имеет носительство стрептококков.


Стрептококки

Морфология

Неподвижные сферические кокки размером 0,5-2,0 мкм.

В мазках они располагаются парами или короткими цепочками, при выращивании в жидких питательных средах.

При неблагоприятных воздействиях стрептококки способны образовывать L-формы.

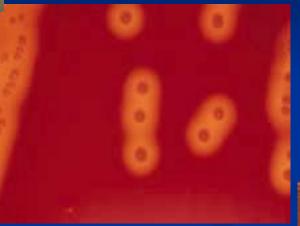
Во многих странах мира отмечен рост заболеваемости стрептококковой инфекцией.

групповые случаи тяжелых генерализованных форм заболеваний (септицемия, некротический миозит, фасцит, первичный перитонит и др.)

Р.Ленсфилд (1933) – деление гемолитических Str. по карбогидратному (капсульному) антигену

По поверхностному группоспецифическому полисахаридному АГ клеточной стенки (С-АГ) стрептококки делят на серогруппы А,В,С, Д-Н и К-до V (20 серогрупп).

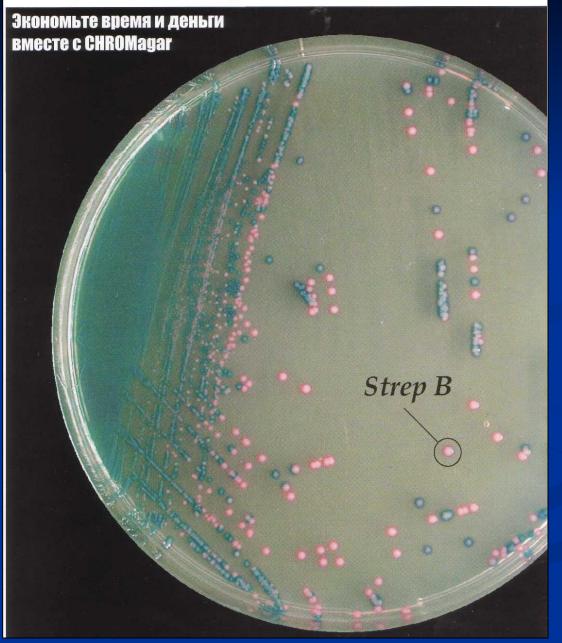
Дж. Шерман (1937) – комплексная фенотипическая схема дифференциации Str. на 4 группы: Pyogenic, Viridans, Lactic и Enterococci.


- *Группа Viridans (зеленящие):* зеленящие, не устойчивые к высокой рН и NaCl, растущие при 10°C.
- **Группа Pyogenic (гнойные):** β-гемолитические Str с групповыми антигенами A,B,C,E,F,G не растут при 10°C
- Группа Lactic (молочные): отличаются от пиогенных способностью расти при 10°С, но не при 45°С, а от энтерококков ингибицией роста 6,5% NaCl. Первоначально включала только молочно-кислые Str.
- *Группа Enterococci (фекальные):* толерантные к высоким pH и концентрации NaCl, растущие в широком диапазоне t =10-45°C, иногда проявляющие β-гемолиз.
- в настоящее время выделены в самостоятельный род.

Рост стрептококков на жидких средах

Тип роста	Культуральные свойства	Стрептококки
Придонно- пристеночный	Среда прозрачна, мелкокрошковатый, зернистый осадок	S.pyogenes
Придонный	Среда прозрачная или мутная, осадок пушистый, рыхлый.	S.pneumoniae, S.agalactiae, S.pyogenes, E.faecalis, E.faecium
Диффузный	Среда мутная, осадок скудный	E.faecalis, E.faecium, редко S.agalactiae, S.pyogenes

α (зеленящие Str) - непрозрачная зеленоватая зона неполного гемолиза



β (гемолитические Str) - прозрачная зона полного гемолиза

у (негемолитические) – не вызывают изменений кровяного агара.

CHROMagar™ Strep B

Посев проб на обогатительные среды

- бульон LIM/Тодд-Хевитта (сердечный настой, пептон, декстроза, хлорид, фосфат и карбонат натрия) с колистином/гентамицином и налидиксовой кислотой).
- сывороточный бульон (гранулярный или хлопьевидный придонный рост).
- кровяной бульон (аналогично + гемолиз).
- Бульон Carrot и др. (18-24 ч; атмосфера 5-10% CO₂)

Посев на плотные среды без предварительного обогащения дает ложноотрицательный результат почти в 50% случаев инфекции СГВ

Патогенез стрептококковых поражений

- Адгезия микроорганизмов- Основные адгезинылипотейхоевые кислоты, фимбрии;
- Наличие сенсибилизации, вызванной ранее перенесенной инфекцией;
- Продукция токсинов и ферментов (более 20);
- аутоиммунные механизмы:
 - Перекрёстные АГ миокардиоцитов и белка М возбудителя
 - депонирование иммунных комплексов (стрептококк-IgG) на мембране клубоч

Факторы вирулентности стрептококков группы А

Белок М	Ингибирует фагоцитарные реакции, непосредственно действуя на фагоциты, адсорбирует на своей поверхности фибриноген и продукты его деградации, разрушает СЗв-компонент комплемента
Капсула	Она защищает бактерии от фагоцитов и облегчает адгезию к эпителию.
F-протеин	Опосредует прикрепление стрептококков к эпителиальным клеткам
Пирогенные экзотоксины (эритрогенины)	Обладают пирогенными свойствами, усиливают ГЧЗТ и чувствительность к эндотоксину, иммуносупрессивный эффект на функции В-лимфоцитов, появление сыпи.
С5а пептидаза	Разрушает С5а компонент комплемента

Стрептолизин S	Разрушает лейкоциты, тромбоциты, эритроциты, стимулирует освобождение лизосомальных ферментов, фактор ревматической лихорадки, неиммуногенен.
Стрептолизин	Разрушает лейкоциты, тромбоциты, эритроциты. Стимулирует освобождение лизосомальных ферментов, образование некротических очагов, иммуногенен
Стрептокиназа	Разрушает кровяные сгустки, тромбы. Облегчает распространение бактерий в тканях
ДНК-аза	Разрушает внеклеточную ДНК

Микробиологическое исследование при стрептококковой инфекции І этап

Сыворотка Гной, раневое отделяемое, экссудат, моча, и др. крови (при ревматизме) Бактериюско-Бактериолопическое пическое Экспресс-методы диалностики Серодиалносисспедование исспедование TIMKA Первичный Биохимичес-Иммунохи-Мазок. **МИЧЕСКИЕ** окраска по посев на KING M Определение методу Грама MOHRBOOK исспедовамолекулярантипен к но-биолопиагар для ния: опре-О-стрептолиполучения ческие депение Ориентиро-SHIP изолированисспедоваантигенов вочное ния: ПЦР ных колоний Предваристрептококзаключение тепьный KOB OTBET Предвари-Предваритепьный тельный OTBET OTBET

Биохимическая идентификация в микро-тест системах

		Н	G	F	E	D	C	В	A
2000 B		NAG	LAP	PWN	GLR	bGL	bGA	αGA	PHS
1	\oplus								
	•	0	0	0	0	0	0	0	0
3		H ESL	G INU	F MAN	E SOR	D MLB	C RIB	B LAC	A PUL
2	(+)	• •	0	MAIN	<u> </u>	MILD	O O	- AC	0
500	<u>-</u>		• •	• •	• •	• •	• •	• •	•
		Н	G	F	E	D	С	В	Α
		ARG	S06	AMG	TGT	MLT	RAF	TRE	SOE
3	•	•	0	• •	•	•	0	•	0
À	Θ	0	• •	• •	•	• •	•	•	•

СТРЕПТО-тест 16 и 24 (ЛаХема) – позволяют в течение 24 ч идентифицировать стрептококки по 12 и 24 биохимическим тестам, соответственно. Возможен неавтоматический (визуальный) учет результатов.

Идентификация СГБ экспресс-методами

Реакция латексагглютинации

Материал для анализа: выросшие на питательных средах колонии СГВ. Тестирование клинического материала: низкая чувствительность и специфичность

Бесприборный иммунохроматографический тест (ИХТ) Материал для анализа:

- выросшие на питательных средах колонии СГВ
- влагалищные мазки

Недостамок: отрицательные показания при низком титре СГВ в клиническом материале

Масс-спектрометрический анализ

- позволяет идентифицировать возбудителя и дифференцировать его инвазивные штаммы от неинвазивных.
- •MALDI TOF (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry)
- SELDI (Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry)

Лечение заболеваний, вызванных СГА

Инвазивные стрептококковые инфекции отличаются высокой скоротечностью процессов, и адекватная срочная антибиотикотерапия имеет первостепенное значение.

Специфическая профилактика

- Ассоциированная вакцина IRS 19 (Германия)- содержит лизаты 6 серотипов пневмококка, 5 серотипов стрептококков, сапрофитных нейссерий, стафилококков, клебсиелл, гемофильных палочек и моракселл.
- Пневмо-23 поливалентная вакцина (Франция) для профилактики пневмококковых инфекций.



Грамотрицательные кокки

Возбудители	Подрод, вид	Основные заболевания
Гонококки	Neisseria gonorrhoeae	Гонорея, бленорея
Менингококки	Neisseria meningitidis	Менингококко- вая инфекция
Моракселлы	Подроды: Moraxella Branhamella	Гнойно- воспалительные заболевания
Вейлонеллы	Подрод Veilonella	

Морфология Neisseria meningitidis

- Типичная для нейссерий может переходить в Lформы.
- Поселяются в лейкоцитах и в мазке видны как бобовидные зерна внутри лейкоцита

Антигенная структура

- родовые АГ (белки и полисахариды) общие для всех нейссерий,
- видовые АГ(белковые),
- группоспецифические (гликопротеидный комплекс)
- типоспецифические- белки наружной мембраны (определяют серотип возбудителя).

По поверхностному полисахариду менингококки разделены на 12 серологических групп:

A, B, C, X,Y, Z, 29-E, 135-W, H, I, K, L.

Наибольшее значение в этиологии менингококковой инфекции имеют 3 серовара Neisseria meningitidis - A, B, C.

Требования к условиям культивирования

- влажность не менее 70%
- Температура 37 оС
- потребность в СО2 в атмосфере.
- высокая потребность в ростовых факторах, (добавки крови, сыворотки, асцитической жидкости)
- pH 7,4-7,6.

Среды в чашках не могут храниться перед употреблением дольше 1—2 сут. перед посевом их подсушивают (и подогревают!) в термостате.

Культивирование

На плотной питательной среде через 18-20 часов образуются бесцветные, опалесцирующие, плоские, круглые колонии диаметром 0,5-1,5 мм. с ровным краем. На среде с кровью образуют колонии беловатосерые, больших размеров.

В бульоне дают равномерное помутнение, иногда нежную пленку на поверхности, в полужидких средах

располагаются в верхнем слое.

N. meningitidis

HansN.

Neisseria meningitidis

Han AN. Neisseria meningitidis

Культуральные свойства

Микроорганизмы	Рост на			5%
	сывороточ- ном агаре	бессыворо- точном ага- ре	Агаре с 0,2% желчи	Образование полисахарида на агаре с 5% глюкозы
N. gonorrhoeae	+	_	_	_
N. meningitidis	+	-	_	_
N. sicca	+	±	±	+
N. subflava	+	±	+	_
N. flavescens	+	±	+	+
N. mucosa	+	+	+	+
B.catarrhalis	+	+	+	_

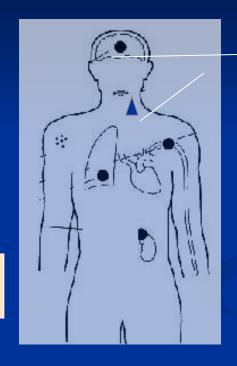
Факторы вирулентности Neisseria meningitidis

Фактор	Биологический эффект
Капсула	Защита от фагоцитоза
Пили	Адгезия к клеткам
Por (белок порин)	Препятствует слиянию фагосомы и лизосомы

Факторы вирулентности Neisseria meningitidis

Фактор	Биологический эффект
ЛОС (липоолигосахарид)	Эндотоксическая активность, пирогенное действие, геморрагические высыпания
IgA-протеаза	Разрушение IgA

Фактор	Биологический эффект
нейраминидаза	Фактор адгезии и инвазии
гиалуронидаза	Фактор инвазии


Менингококковая инфекция

Менингит

Геморрагическая сыпь

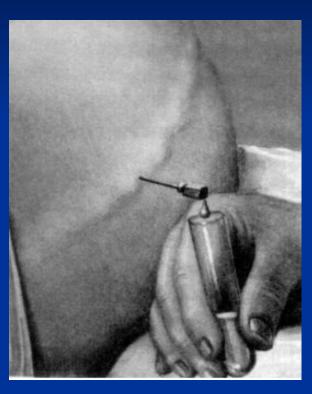
Легочная недостаточность

Некроз коры надпочечников

Назофарингит, бессимптомное носительство

Сепсис, септический шок

- 1. Менингококковое носительство
- 2. Менингококковый назофарингит
- 3. Менингит
- 4. Менингококцемия


Материал, направляемый в лабораторию, при гнойных менингитах

- нативный ликвор (1мл);
- ликвор (0,5 мл) в 5 мл полужидкого агара;
- толстая капля крови;
- кровь в обогатительной среде или 0,1% полужидком агаре (1:10)
- кровь в количестве не менее 2 мл для индикации Аг и AT

ТАМПОН ДЛЯ ВЗЯТИЯ НОСОГЛОТОЧНОЙ СЛИЗИ ПРИ ПОДОЗРЕНИИ НА МЕНИНГОКОККОВУЮ ИНФЕКЦИЮ

Исследование ликвора

Первая порция СМЖ (1 мл) — общее ликворологическое исследование
Вторая порция СМЖ — микробиологическое исследование:

- 1 мл в стерильную пустую пробирку
- 0,5 мл в 5 мл 0,1% полужидкого агара

Материал немедленно доставляют в лабораторию в теплом виде

Питательные среды для N.meningitidis по приказу № 375 от 23.12.1998

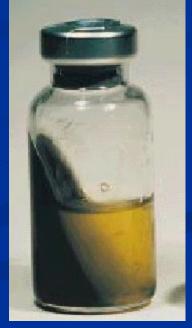
Транспортные среды

- Жидкие среды с линкомицином (5 мкг/мл) или ристомицином (20 ЕД/мл)
- Полужидкая среда с ристомицином (20 ЕД/мл)

Среды для выделения нейссерий

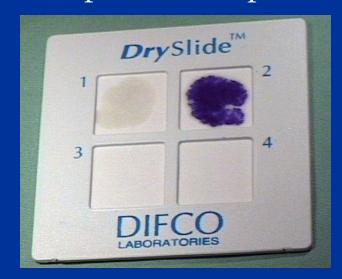
- Сывороточный агар
- Сывороточный агар с ристомицином (20 ЕД/мл)
- Сывороточный агар с линкомицином (5 мкг/мл)
 - Двухфазная питательная среда

Среды для идентификации


- Желчно-сывороточный агар
- Плотные среды с углеводами и сывороткой

Двухфазная питательная среда

- Плотная часть
 - скошенный"шоколадный" агар на триптическомпереваре
- Жидкая часть
 - бульон на переваре Хоттингера
 - экстракт пекарских дрожжей


Первичный рост (помутнение) удается выявить уже через 3-4 часа

МР "Современные методические подходы к микробиологической диагностике гемофильной инфекции", 1992, Приказ № 375 от 23.12.98

Биохимическая активность

- Выражена слабо.
- Разлагают глюкозу, мальтозу с образованием кислоты без газа;
- не разлагают лактозу, сахарозу, не образуют индола и сероводорода;
- обладают оксидазной активностью, восстанавливают нитраты в нитриты, не разжижают желатину.

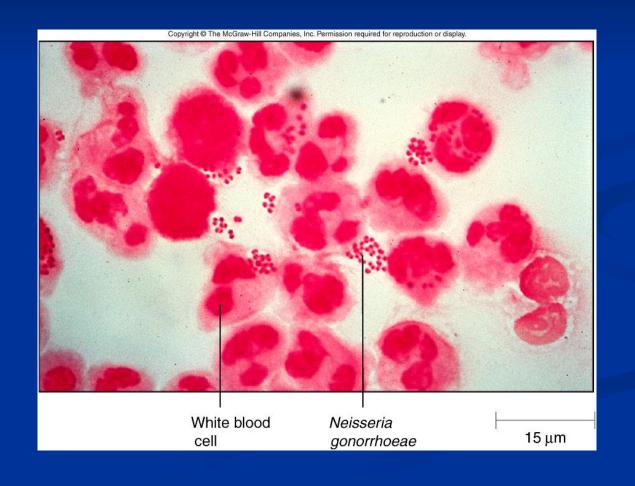
Экспресс-диагностика

- При помощи коммерческих тест-систем обнаружение в СМЖ специфических антигенов менингококка
- латекс-агглютинация,
- ко-агглютинация,
- иммуноферментный анализ

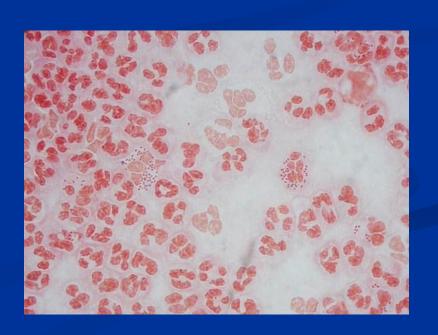
Цель постановки РНГА

- а) как дополнительный метод диагностики менингококковой инфекции для обнаружения нарастания титра антител (диагностический титр 1/16, 1/32);
- б) для ретроспективной диагностики локализованных форм в очагах заболевания;
- в) для выявления серонегативных контингентов;
- г) при оценке эффективности вакцинации.

Вакцины


- Вакцина менингококковая группы А полисахаридная сухая;
- Вакцина менингококковая групп A и C полисахаридная сухая;
- Вакцина менингококковая A+C (Meningo A+C) Пастер-Мерье
- Вакцина менингококковая B+C (Va-Meningoc BC) Куба

Специфическая терапия


- Плацентарный иммуноглобулин.- защищает детей от возникновения генерализованных форм менингококковой инфекции.
- Антименингококковая иммунная плазма (получена в Ленинграде в 1990 г.) При ее применении отмечается снижение летальности в 2,5 раза.

Гонококковая инфекция

Методы диагностики

- Бактериоскопический метод;
- Бактериологический метод;
- Индикация антигенов;
- Генная диагностика;
- Серодиагностика

Диагностические критерии бактериоскопического метода

- Обнаружение грамотрицательных диплококков, напоминающих по форме кофейное зерно;
- При большом количестве диплококки располагаются в мазке во взаимно перпендикулярных плоскостях;
- Внутриклеточное расположение диплококков.

Безасцитные среды

Среда КДС-1

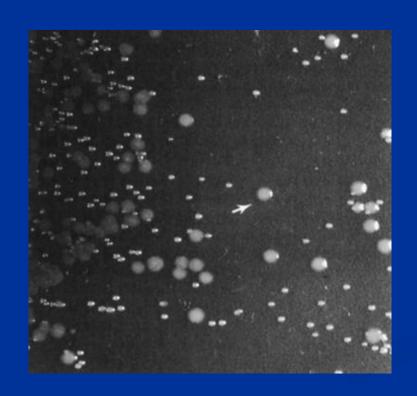
- 1. МПА из кроличьего мяса;
- 2. Гидролизат казеина;
- 3. Дрожжевой аутолизат;
- 4. Сыворотка КРС

Среда 199-СДС

- 1. МПА из кроличьего мяса;
- 2. Среда № 199 для культур клеток;
- 3. Дрожжевой аутолизат;
- 4. Сыворотка КРС

Среда ГДС-2

- 1. МПА из кроличьего мяса;
- 2. Гемогидролизат;
- 3. Дрожжевой аутолизат;
- 4. Сыворотка КРС


Среда ЖС

- 1. МПА из кроличьего мяса;
- 2. Желток куриного яйца;
- 3. Сыворотка КРС

Отечественные среды промышленного производства

- Питательная среда для выделения гонококка сухая фл. 100мл (НПО «Аллерген»,
 Ставрополь)
- Гонококковая среда (комплект: 100мл основа; 24 мл добавка) (НИВС, Красное Село)
- ГНК –агар (ФГУП ГНЦ ПМ, Оболенск)

На сывороточном агаре образуют белесоватые колонии или крупные прозрачные колонии в виде капель росы диаметром 1-3 мм с ровным краем.

Факторы	Биологический эффект
вирулентности	
Пили (белок-пилин)	Прикрепление гонококков к клеткам эпителия слизистых оболочек человека
Капсула	Антифагоцитарная активность
Протеин I (пориновый	Способствует внутриклеточному выживанию
белок)	бактерий, препятствуя слиянию лизосом с
	фагосомами нейтрофилов
Протеин II	Опосредует плотное прикрепление к
(Opa-Opracityprotein	эпителиальным клеткам и инвазию внутрь
протеин мутности)	клеток
Протеин III	Защищает поверхностные АГ (пориновый
(Rmp-Reduction-modifloble	белок и липополисахарид) от бактерицидных
protein)	AT
Липополисахарид	Обладает свойствами эндотоксина
Ig-Al-протеазы	Расщепление молекулы IgA 1
Бета-лактамаза	Гидролизует бета-лактамное кольцо
	пенициллинов

Верификация диагноза «Гонококковая инфекция локализованная. Острая; без осложнений» согласно приказу МЗ РФ №145

- Микробиологическое исследование
- Однократно отделяемого из уретры
- По потребностям :
 - ВЛАГАЛИЩНОГО ОТДЕЛЯЕМОГО;
 - глазных структур и жидкостей;
 - отделяемого из цервикального канала;
 - секрета больших парауретральных и вестибулярных желез;
 - отделяемого из ротоглотки;
 - секрета простаты;
 - МОЧИ.
- Микробиологическая диагностика гонорей проводится до лечения, затем через 2 и 14 дней после лечения (дальнейшие исследования по показаниям).

ПРОТОКОЛ ВЕДЕНИЯ БОЛЬНЫХ. ГОНОКОККОВАЯ ИНФЕКЦИЯ. Утвержден приказом МЗ РФ №145 от 20.08.03

Внегенитальные поражения

Фарингит

Бленнорея новорожденных

Этиотропное лечение антибактериальными препаратами.

Для лечения и диагностики хронических форм заболевания применяется убитая гонококковая вакцина (постановка провокационной пробы).

Специфической профилактики нет.

Благодарим за внимание!