

УБЕДИТЕЛЬНАЯ ПРОСЬБА!

КЛЮЧЕВЫЕ ПОЛОЖЕНИЯ #1

- 1. Метаболическая активность организма зависит от регуляции кислотно-
- щелочного равновесия, что соответствует величине рН ВнеКлЖидк
- 2. Возбудимость клеток, активность ферментов, протекание биохими
 - ческих реакций зависят от величины рН. Диапазон рН ничтожен
- 3. Величина рН меняется при многих патологических состояниях
- 4. Стабильность рН крови поддерживается активностью буферных систем крови, лёгких и почек
- 5. Регуляция количества кислот и оснований в организме обеспечивает **слабо щелочную** (7.35-7.45) величину рН ВнеКлЖидк, что соответствует примерному содержанию Н⁺ в 40 нмоль/л
- 6. Регуляция КЩР обеспечивается **точными** механизмами **синтеза**, **поддержания** активности и **распада** кислот и оснований
- 7. Существенные отклонения от нормальных величин рН нарушают **метаболизм**, функции клеточных **мембран**, концентрации **ионов**
- 8. Поддержание КЩР жизненно важно для человека. Величина рН крови ниже 7.0 и выше 7.8 несовместима с жизнью!

КЛЮЧЕВЫЕ ПОЛОЖЕНИЯ #2

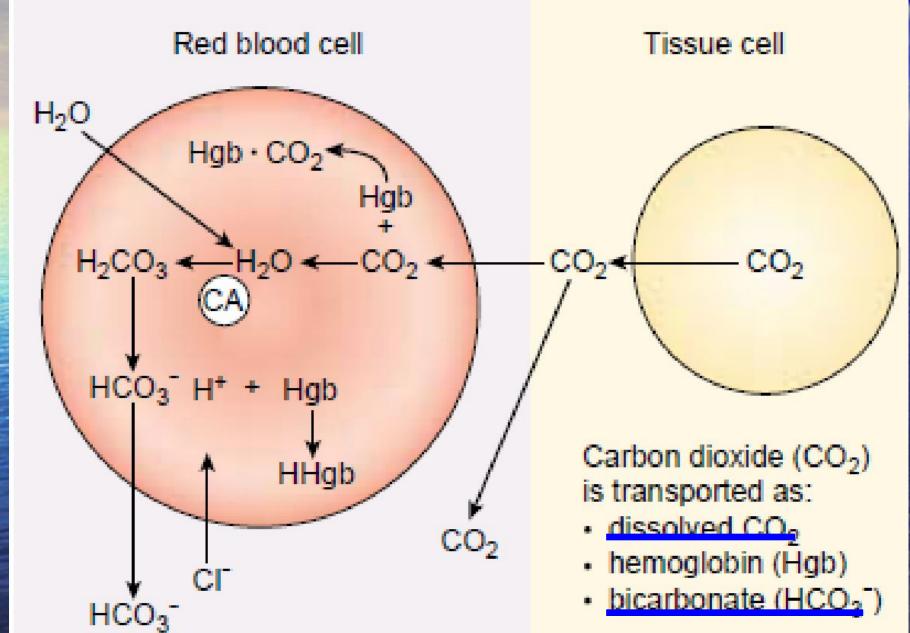
- 1. Концентрация водородных ионов это число полярных группировок в макромолекулах, прежде всего белковых, а значит:
 - Активность всех ферментов
 - Емкость транспортных белков, в т.ч. Hb
 - Работа трансмембранных насосов
 - Функция ионных и других каналов

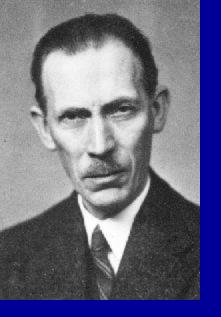
- 2. Н+ и ОН- влияют на обмен других ионов:
 - Обмен протонов на К+
 - Иммобилизация Са²⁺ избытком ОН⁻

ХИМИЯ кислот и оснований #1

- 1. *Кислота* молекула, которая может высвобождать свободные ионы H⁺, *основание* молекула, которая в состоянии присоединить или обменять H⁺
- 2. Большинство кислот и оснований в организме— химически слабые; угольная к-та (H₂CO₃) слабая к-та, образованная из CO₂ и бикар-бонат иона (HCO₃), который является слабым основанием
- 3. Концентрация H⁺ в жидкостных средах организма низкая относительно других ионов. Концентрация ионов Na⁺ в 1миллион раз превышает таковую концентрацию ионов H⁺
- 4. По причине малой концентрации в жидкостях организма величину рН рассчитывают с учетом концентрации Н⁺ ионов
- 5. Величина *pH* это **отрицательный логарифм** концентрации ионов H⁺, выраженная в мЭкв/л.
- 6. Величина **pH=7.0** означает концентрацию H⁺ в **10**⁻⁷ степени (0.000001 мЭкв/л)
- 7. Вследствие обратной зависимости низкая величина pH означает высокий уровень H⁺, а высокая величина pH незначительную концентрацию H⁺

КИСЛОТЫ и образование бикарбонат -ионов

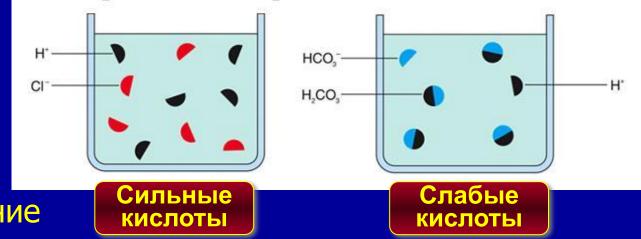



Образование (биосинтез) кислот

- 1. В процессе окисления серо-содержащих аминокислот (метионина, цистеина, цистина) синтезируется *серная кислота*
- 2. Лактат образуется при анаэробном окислении глюкозы (гликогена)
- 3. *Фосфорная кислота,* синтезирующаяся при метаболизме фосфолипидов, является основным источником H⁺
- 4. Мочевая кислота синтезируется при метаболизме нуклеопротеинов
- 5. *Ацетоуксусная и β-гидроксимасляная кислоты* синтезируются в результате метаболизма триглицеридов
- 6. Уксусная кислота существует краткосрочно, поскольку в организме быстро распадается с образованием ${\rm CO_2}$ и ${\rm H_2O}$

Основные источники <u>оснований</u> — процессы метаболизма аминокислот (аспартат и глутамат) и некоторых органических анионов (цитрат, лактат, ацетат)

Оксид углерода (CO₂) и образование бикарбоната



XИМИЯ кислот и оснований #2 J.N. Brønsted (1879-1947)

- 1. Кислота донор протонов (H⁺)
- 2. Основание акцептор протонов
- 3. Сила кислоты или основания равна степени их диссоциации в растворе

Отсюда:

- NH₃ основание
- NH₄Cl кислота
- NaHCO₃ основание

Расчет величины рН

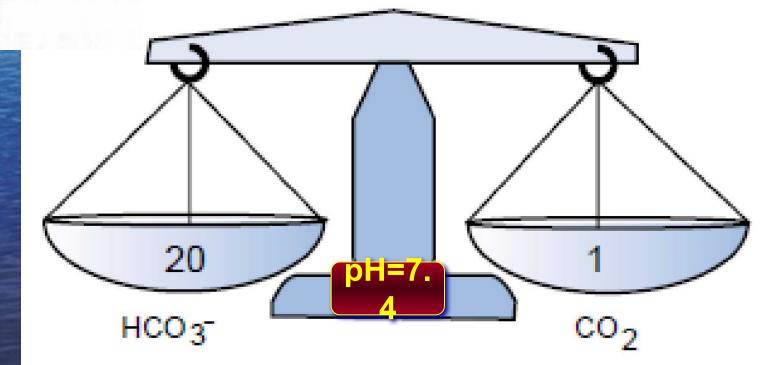
- <mark>1. <u>Н</u>±<u>ионы</u>. Поступление с пищей (уксус) либо в результате</mark>
- метаболизма, элиминация при ломощи почек
 2. ОН ионы. Поступление с пищей (солевые или слабокислые растворы). В особенности – при вегетарианской диете
- 3. ${\color{red} {\rm CO}_2}$. Концентрация может изменяться вследствие нарушений метаболизма ${\color{red} {\rm CO}_2}$ или выделения лёгкими ${\color{red} {\rm CO}_2}$
- 4. <u>HCO₃- ионы</u>. Элиминируются из организма кровью при помощи почек или ЖКТ (диарея)

Величина pH рассчитывается при помощи уравнения Хендерсона-Хассельбаха (Henderson-Hasselbalch equation)

$$pH = 6.1 + \log \frac{[HCO_3]}{[H_2CO_3]}$$

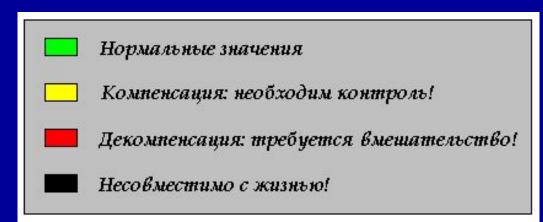
$$= 6.1 + \log \frac{24}{1.2}$$

$$= 6.1 + 1.5$$

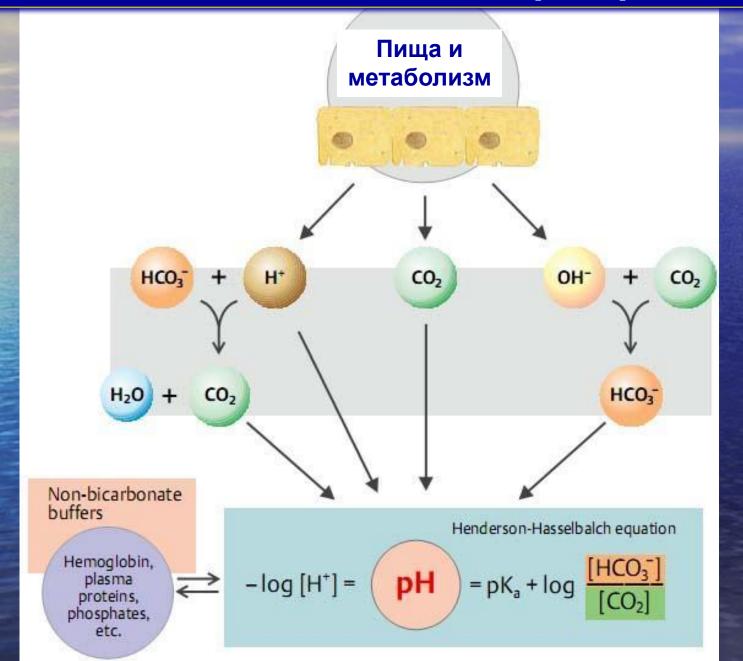

$$= 7.40$$

Уравнение Хендерсона-Хассельбаха Henderson-Hasselbalch equation

$$pH = 6.1 + \log \frac{[HCO_3]}{[H_2CO_3]}$$
$$= 6.1 + \log \frac{24}{1.2}$$
$$= 6.1 + 1.5$$


pH =
$$pka$$
 (6.1) + log
HCO₃-/CO₂

$$= 7.40$$


Диапазон изменений рН

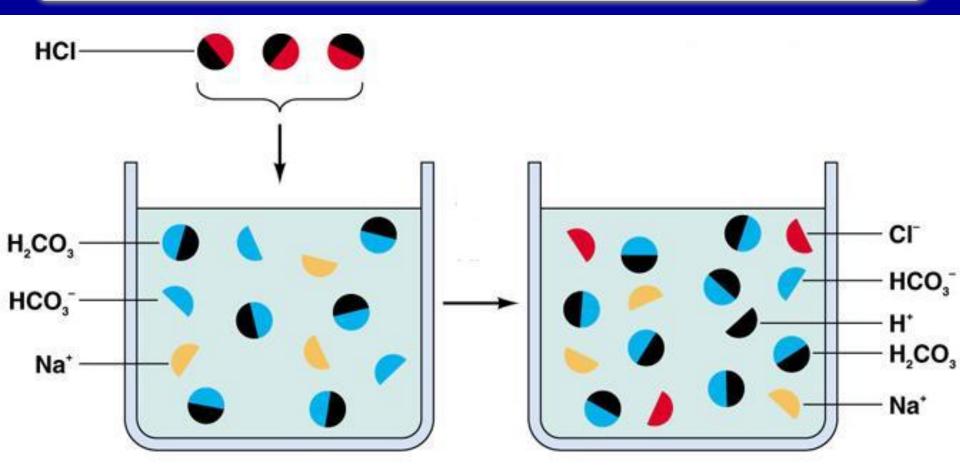
«Физиологическая шкала» – четыре диапазона:

ФАКТОРЫ, изменяющие рН крови

Факторы, изменяющие рН Non-bicarbonate buffers Henderson-Hasselbalch equation Hemoglobin, [HCO₃ $= pK_a + log$ -log [H+] = pH plasma proteins, phosphates, etc. CO2 Дыхание 2HCO₃⁻ + 2NH₄⁺ ⇒ Urea, etc. Печень Почки NH₄⁺ HCO₃ H+ as H2PO4

Буферные системы организма

- 1. Стабильность (поддержание) рН преимущественно обеспечивается активностью буферных систем
- 2. Буферная система химически активная единица, которая минимализует сдвиг рН при добавлении кислоты или
- основания 3. Оперативная регуляция рН зависит от работы буферных
- систем во вне- и внутриклеточной средах организма
 4. Важно: буферные системы не предотвращают изменения
 рН


Величина рН жидкостных сред организма регулируется 3 механизмами

1-я линия регуляции рН – вне- и внутрикл. буферные системы

- 2-я линия регуляции pH лёгкие (контроль выделения CO₂)
- 3-я линия регуляции рН почки (контроль выделения Н⁺ и регуляция выделения НСО₃-

Как работает буфер?

- 1. Смесь слабой кислоты и ее соли с сильным основанием или слабого основания и его соли с сильной кислотой
- 2. Цель связать поступающие извне H⁺ и OH⁻

организма

БФ в крови

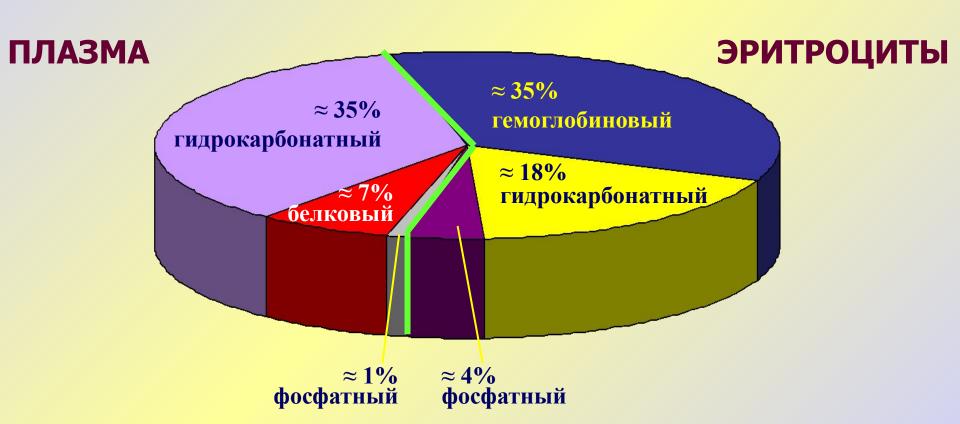
Тканевые БС

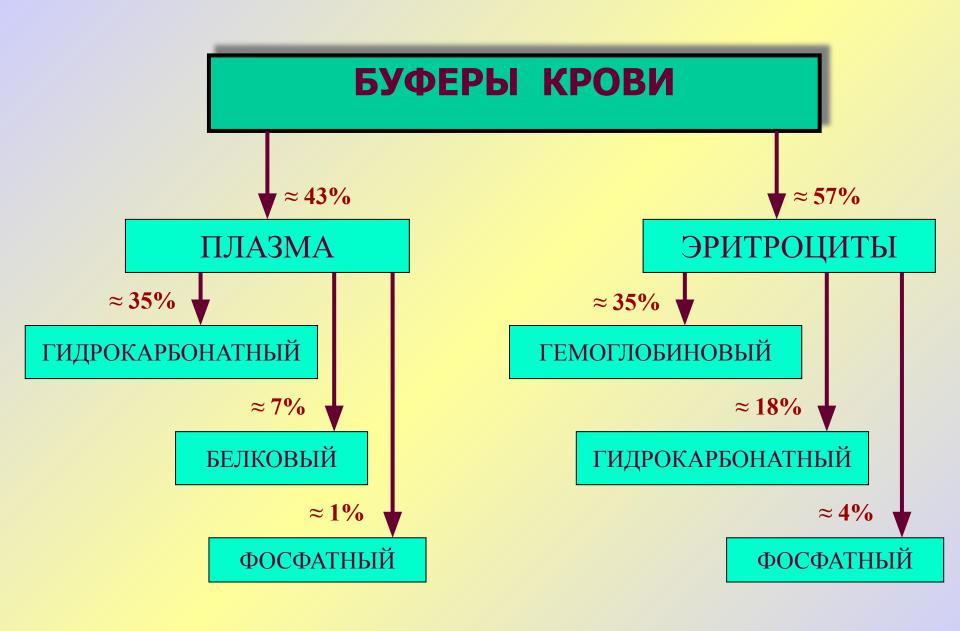
HCO₃

белковая

Мышцы Кости

гемоглобин

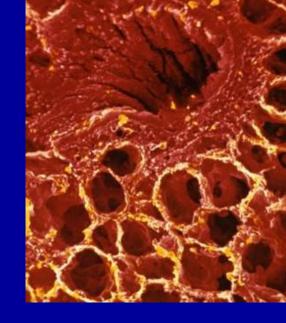

фосфатная

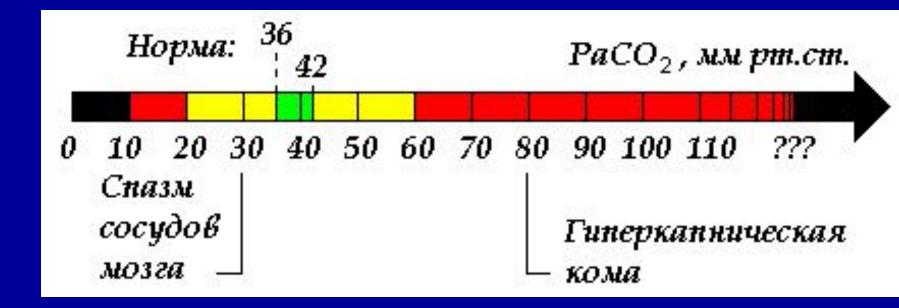

Buffer Pairs	Buffer System	pK Values Reaction	
HCO ₃ /H ₂ CO ₃	Bicarbonate	6.1	$H^+ + HCO_3^- \ge H_2O + CO_2$
Hb-/HHb	Hemoglobin	7.3	$HHb \longrightarrow H^+ + Hb^-$
HPO ₄ /H ₂ PO ₄	Phosphate	6.8	$H_2PO_4 \longrightarrow H^+ + HPO_4^-$
Pr-/HPr	Plasma proteins	6.7	$HPr \longrightarrow H^+ + Pr^-$

Organs	Wechanism
Lungs	Regulates retention or elimination of CO ₂ and therefore H ₂ CO ₃ concentration
Ionic shifts	Exchange of intracellular potassium and sodium for hydrogen
Kidneys	Bicarbonate reabsorption and regeneration, ammonia formation, phosphate buffering
Bone	Exchanges of calcium, phosphate, and release of carbonate

 HCO_3^- , bicarbonate; H_2CO_3 , carbonic acid; Hb^- , hemoglobin; HPO_4^- , phosphate; Pr, protein.

ОТНОСИТЕЛЬНАЯ ЁМКОСТЬ БУФЕРОВ КРОВИ


Респираторные механизмы поддержания рН


Респираторный механизм регулирует колебания СО2

- 1. Пр каждом выдохе организм выделяет CO_2 и H_2O
- 2. Гиповентиляция вызывает дыхательный ацидоз, при гипервентиляции развивается дыхательный алкалоз. Респираторные нейроны при этом регулируют частоту и глубину дыхания (дыхательный объём)
- 3. Изменения параметров частоты и глубины дыхания могут
 - частично скорректировать метаболические нарушения
- 4. Повышенный уровень напряжения СО₂ в крови мощный стимул для гипервентиляции; при этом в большей степени активируются центральные, в меньшей периферические хеморецепторы

Легкие: выделение СО2

Нормальные значения
Компенсация: необходим контроль!
Декомпенсация: требуется вмешательство!
Несовместимо с жизнью!

Почечные механизмы поддержания рН

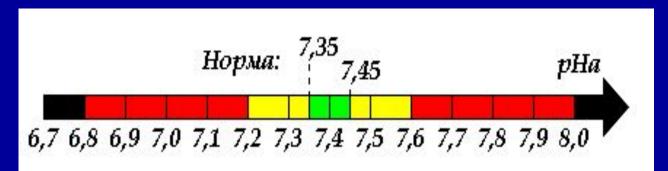
Почечные механизмы – мощнейший источник компенсации изменений рН. Медленно активирующийся, но длительно действующий

- 1. Почки наиболее эффективный регулятор рН крови
- 2. Почки экскретируют большее кол-во кислот, чем лёгкие. При необходимости могут экскретировать основания, что лёгкие делать вообще не могут

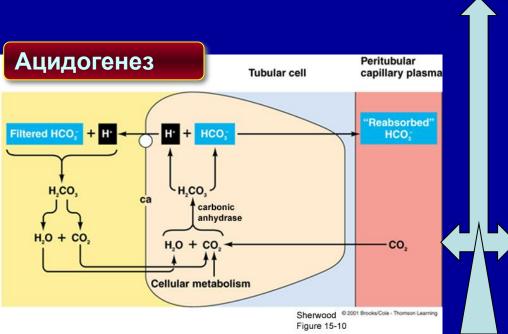
Почки фильтруют НСО -

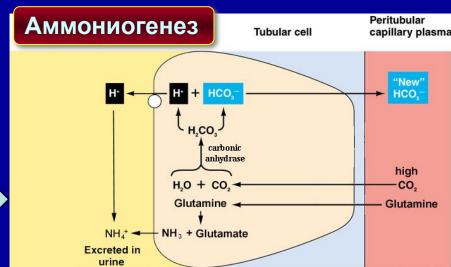
2 мощнейшие внутриканальцевые БС

Уровень К⁺ в плазме детерминирует выделение почками Н⁺


Альдостерон!

Консервация или элиминация HCO₂⁻ ионов Фосфатная буферная с-ма


Аммиачная буферная с-ма


Выделение мочевой к-

Почки: регуляция рН мочи

ФИЗИОЛОГИЧЕСКИЕ ("ОРГАННЫЕ") МЕХАНИЗМЫ УСТРАНЕНИЯ / УМЕНЬШЕНИЯ СТЕПЕНИ СДВИГОВ КЩР

ЛЁГКИЕ:

изменение объёма вентиляции альвеол →

±p_oCO₂

почки:

изменение активности:

- ацидогенеза
- аммониогенеза
- секреции фосфатов
- **K**⁺-**N**a⁺ обмена

ПЕЧЕНЬ:

- активация химических буферных систем
- изменение метаболизма:
- $\sqrt{}$ синтез белков
 - крови
- √ образование аммиака
- √ активация
 - глюконеогенеза (при ацидозе)
- **√глюкуронизация**
 - и сульфатация метаболитов
 - и ксенобиотиков
- экскреция кислых
 - и основных веществ с
- желчью

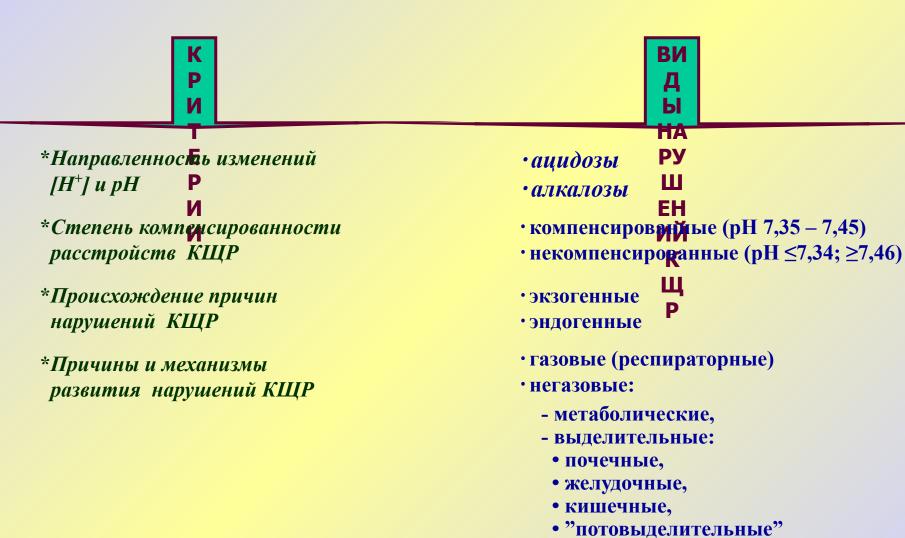
ЖЕЛУДОК:

• изменение секреции HCl

КИШЕЧНИК:

- секреция кишечного сока
- реабсорбция компонентов химических буферов
- ± всасывания жидкости

PANCREAS:


• ± синтеза бикарбонатов клетками внешней секреции

Нарушения кислотно-щелочного равновесия

- 1. Понятия ацидоз и алкалоз описывают клинические состояния, возникающие в результате изменения концентрация ${\rm CO_2}$ и ${\rm HCO_3}^-$
- 2. Алкалоз развивается при повышении рН крови выше нормальных показателей (рН>7.45)
- 3. Ацидоз развивается при снижении рН крови ниже нормы (рН<7.35)

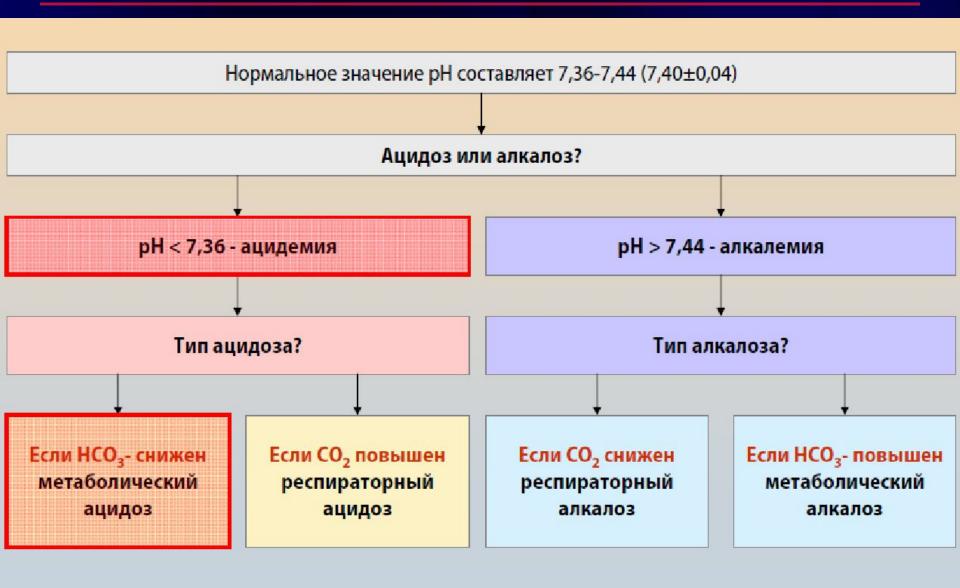
	Primary Disturbance			Compensations		
	рН	Pco ₂	HCO₃	рН	Pco ₂	HCO ₃
Metabolic acidosis	1	N	1	↑-N	1	1
Metabolic alkalosis	1	N	1	↓-N	1	1
Respiratory acidosis	\downarrow	1	N	↑-N	1	1
Respiratory alkalosis	1	1	N	↓-N	1	1

ВИДЫ НАРУШЕНИЙ КИСЛОТНО-ЩЕЛОЧНОГО РАВНОВЕСИЯ

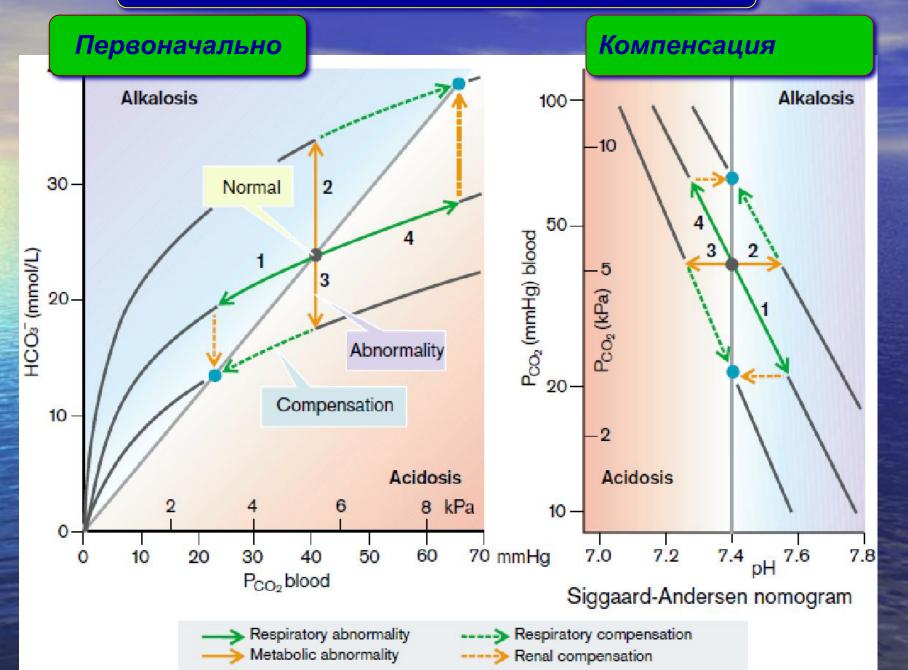
• смешанные (комбинированные)

(гипогидратационные)

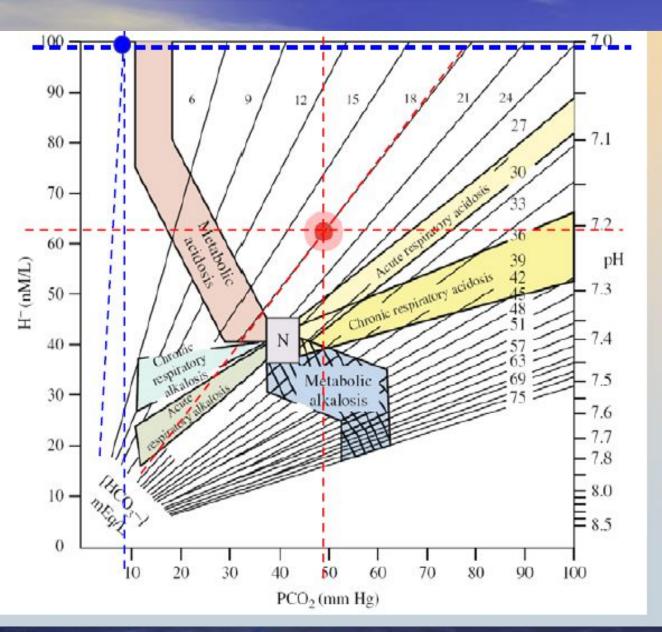
- экзогенные


вопрос?

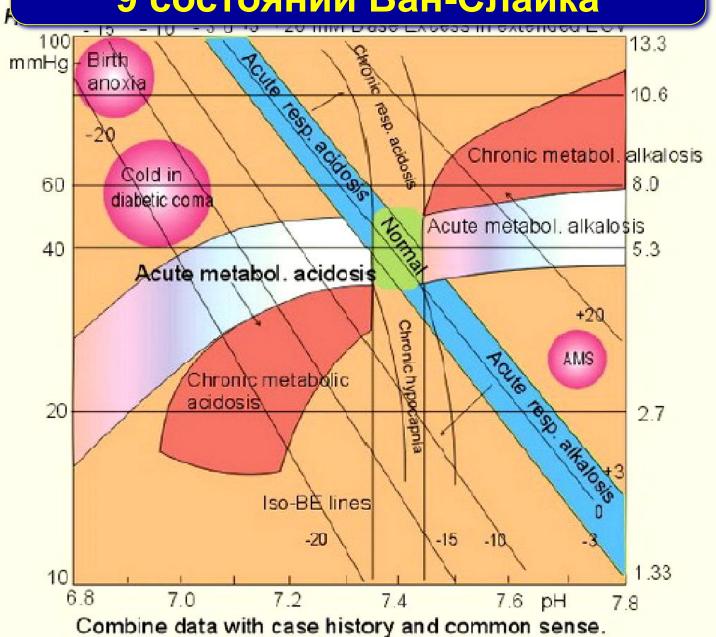
1	pН	pCO2	НСО3	Интерпретация
2	7.41	40	24	,
3	7.5	42	35	?
4	6.72	40	5	?
5	7.26	63	25	?
1	7.52	18	25	?


OTBET!

1	pН	pCO2	HCO3	Интерпретация
2	7.41	40	24	норма
3	7.5	42	35	метаболический алкалоз
4	6.72	40	5	метаболический ацидоз
5	7.26	63	25	дыхательный ацидоз
1	7.52	18	25	дыхательный алкалоз


помощь!

Ацидоз и\или Алкалоз #1



Ацидоз и\или Алкалоз #2

- Картирование простейший способ анализа КЩР.
- Сопоставление рН, РСО₂
 и бикарбоната
 (диагональные линии).
- Нельзя выявить тройные расстройства (два метаболических и одно респираторное).
- «Белое поле» —
 высока вероятность
 «смешанных
 расстройств».

Ацидоз и\или Алкалоз #3 9 состояний Ван-Слайка

ГАЗОВЫЕ НАРУШЕНИЯ КЩР

ПРИЧИНА: первичное изменение р_аСО₂

СЛЕДСТВИЕ: изменение [HC(□|/[H₂CO₃]

ПРОЯВЛЕНИЯ:

АЦИДОЗ:

↓рН ↑р_aCO₂ ↑[H₂CO₃] ↑[HCC □] **(реакция компенсации)**

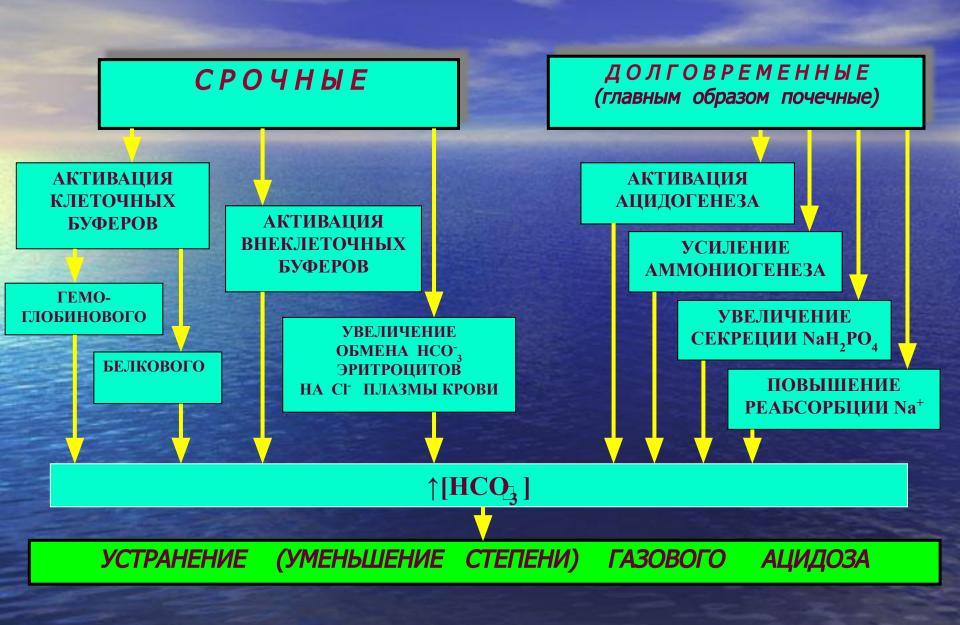
АЛКАЛОЗ:

↑рН↓**p**_aCO₂
↓[**H**₂CO₃]
↓[**H**CC □]
(реакция
компенсации)

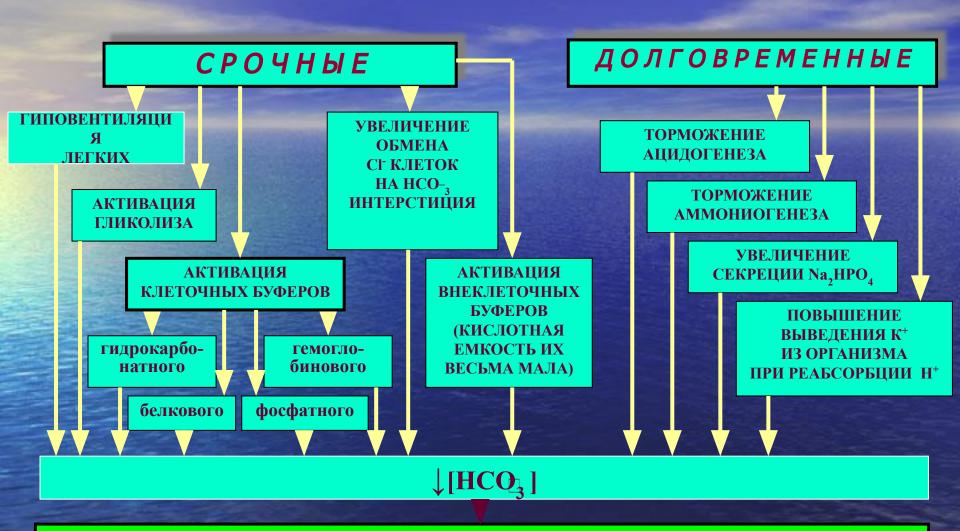
НЕГАЗОВЫЕ НАРУШЕНИЯ КЩР

*ПРИЧИНА:*первичное
изменение
[НСО₃]/[Н₂СО₃]

ПРОЯВЛЕНИЯ:


АЦИДОЗ:

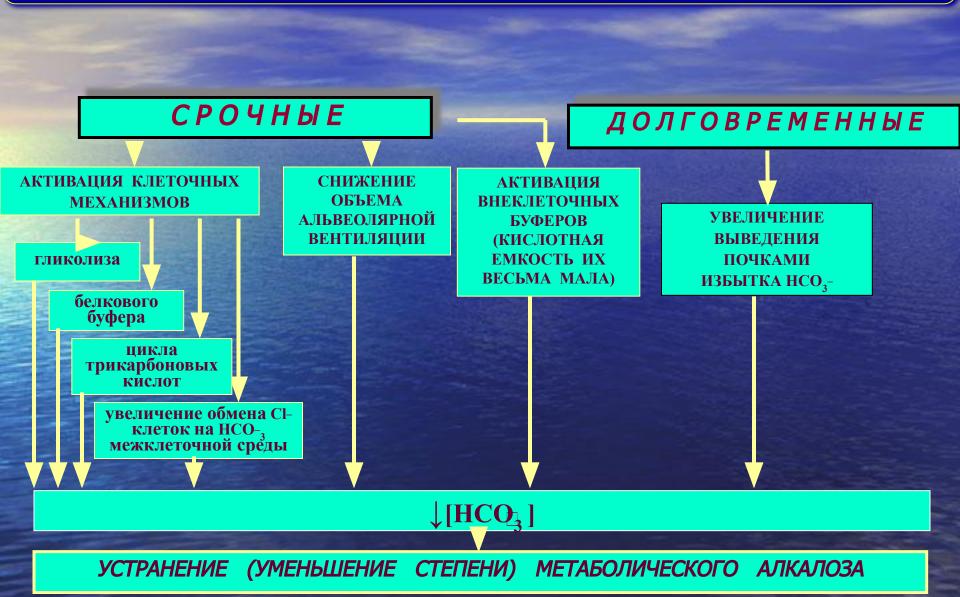
↓рН ↓[НСО₃]! **↓рСО**₂
(реакция
компенсации)


АЛКАЛОЗ:

↑рН ↑[HCO₃]! ↑рСО₂
(реакция
компенсации)

МЕХАНИЗМЫ КОМПЕНСАЦИИ РЕСПИРАТОРНОГО АЦИДОЗА

МЕХАНИЗМЫ КОМПЕНСАЦИИ РЕСПИРАТОРНОГО АЛКАЛОЗА


УСТРАНЕНИЕ (УМЕНЬШЕНИЕ СТЕПЕНИ) ГАЗОВОГО АЛКАЛОЗА

МЕХАНИЗМЫ КОМПЕНСАЦИИ МЕТАБОЛИЧЕСКОГО АЦИДОЗА

УСТРАНЕНИЕ (УМЕНЬШЕНИЕ СТЕПЕНИ) МЕТАБОЛИЧЕСКОГО АЦИДОЗА

МЕХАНИЗМЫ КОМПЕНСАЦИИ МЕТАБОЛИЧЕСКОГО АЛКАЛОЗА

ВИДЫ ВЫДЕЛИТЕЛЬНОГО АЦИДОЗА

ПОЧЕЧНЫЙ

* накопление
в организме кислот
* потеря им
оснований

КИШЕЧНЫЙ

* потеря организмом оснований ГИПЕРСАЛИВАЦИОННЫЙ

* потеря организмом оснований

ПРИМЕРЫ ПАТОЛОГИЧЕСКИХ СОСТОЯНИЙ И ВОЗДЕЙСТВИЙ, ВЫЗЫВАЮЩИХ ВЫДЕЛИТЕЛЬНЫЙ АЦИДОЗ:

•почечная недостаточность •интоксикация сульфаниламидами • "обессоливающий" нефрит •гипоксия

ткани почек

•диарея
•фистула тонкого
кишечника
•открытая рана
тонкого кишечника
• рвота кишечным

содержимым

•стоматиты
•отравление никотином,
препаратами ртути
•токсикоз

беременных гельминтоз

МЕХАНИЗМЫ КОМПЕНСАЦИИ ВЫДЕЛИТЕЛЬНОГО АЦИДОЗА

УСТРАНЕНИЕ (УМЕНЬШЕНИЕ СТЕПЕНИ) ВЫДЕЛИТЕЛЬНОГО АЦИДОЗА

ВИДЫ ВЫДЕЛИТЕЛЬНОГО АЛКАЛОЗА

ЖЕЛУДОЧНЫЙ

ПОЧЕЧНЫЙ

КИШЕЧНЫЙ

ДЕГИДРАТАЦИОННЫЙ (потеря Ct)

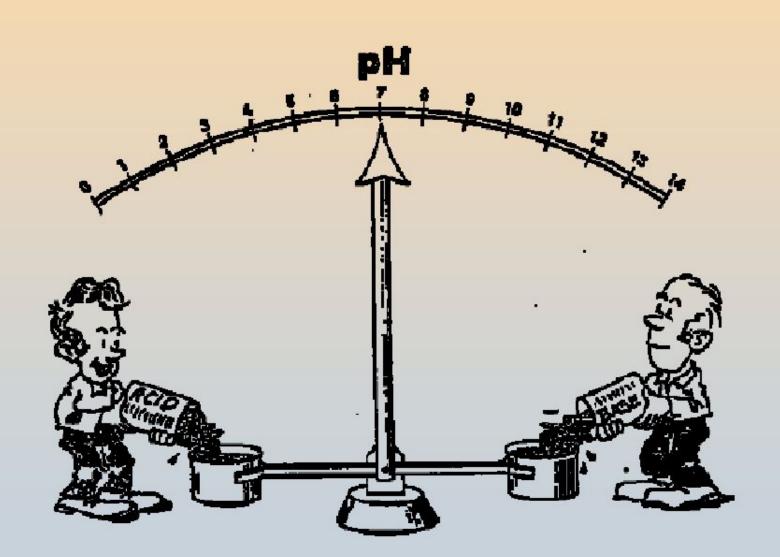
*потеря НСІ желудочного сока

*увеличение реабсорбции оснований

*повышение выведения хлоридов, К+ *усиление экскреции

H⁺ в почках

*увеличение выведения К⁺ через кишечник


ПРИМЕРЫ ПАТОЛОГИЧЕСКИХ СОСТОЯНИЙ И ВОЗДЕЙСТВИЙ, ВЫЗЫВАЮЩИХ ВЫДЕЛИТЕЛЬНЫЙ АЛКАЛОЗ

- токсикоз беременных
- пилороспазм
- пилоростеноз
- · кишечная непроходимость. Сопровождается повторной рвотой желуд. содержимым
- длительное применение диуретиков, антибиотиков, нитратов

- злоупотребление слабительными •повторное
- •повторное применение клизм

• длительное интенсивное потовыделение

Спасибо за внимание!

