ВРОЖДЕННЫЕ ПОРОКИ СЕРДЦА (ВПС) У ДЕТЕЙ

Заведующий кафедрой детских болезней Башкирского государственного медицинского университета д.м.н., проф. Э.И. Эткина

Определение ВПС

- Врожденный порок сердца является структурной аномалией сердца или внутригрудных отделов магистральных сосудов, что практически и потенциально приводит к функциональным нарушениям.
- Врожденный порок сердца анатомическая деформация сердца или крупных сосудов, развивающаяся внутриутробно, вне зависимости от того, когда она была обнаружена.
- Врожденные пороки сердца это аномалии морфологического развития сердца, его клапанного аппарата и магистральных сосудов, возникшие на 2-8-й неделе внутриутробного развития в результате нарушения процессов эмбриогенеза. Эти дефекты могут встречаться изолированно или в сочетании друг с другом (Федеральные клинические рекомендации).
- Данная патология имеет серьезный прогноз в отношении предстоящей жизни и социальной адаптации ребенка.

Кодирование ВПС по МКБ-10 Q20-Q26 ВРОЖДЕННЫЕ АНОМАЛИИ [ПОРОКИ РАЗВИТИЯ] СИСТЕМЫ КРОВООБРАЩЕНИЯ

- Врожденные аномалии [пороки развития] сердечных камер и соединений (Q20) Q20.9
- Врожденные аномалии [пороки развития] сердечной перегородки (Q21)
- Врожденные аномалии [пороки развития] легочного и трехстворчатого клапанов (Q22)
- Врожденные аномалии [пороки развития] аортального и митрального клапанов (Q23)
- Другие врожденные аномалии [пороки развития] сердца (Q24)
- Врожденные аномалии [пороки развития] крупных артерий (Q25)

Распространенность ВПС

- Распространенность ВПС и крупных сосудов по данным официальной статистики в различных регионах РФ составляет 3,17-8,0 на 1000 новорожденных.
- В структуре сердечно-сосудистой патологии у детей раннего возраста ВПС занимают одно из ведущих мест (34%). ВПС в структуре ВПР в нашей стране занимают 1-2 место и конкурируют с пороками костномышечной системы и опорно двигательного аппарата.
- По данным Hoffman J.I.E., Kaplan S. распространенность ВПС в США колеблется от 4 до 50 случаев на 1000 новорожденных.
- Показатели распространенности ВПС у детей варьируют в связи с разницей в критериях их оценки и увеличиваются при учете детей с малыми ВПС. Так в США распространенность ВПС составляет; 19 на 1000 новорожденных при учете 2-х створчатого аортального клапана; 75 на 1000 при учете мышечных дефектов ДМЖП.

Статистические данные распространенности врожденных пороков сердца (ВПС)

- Частота ВПС (по данным ВОЗ) 1 % среди всех новорожденных.
- Распространеность ВПС 30 % от числа врожденных пороков развития.
- От ВПС умирают 5 6 детей на 100 000 населения.
- По данным Б.Я. Резника (1994) частота изолированых и системных ВПС составляет 3,7 : 1 000 или 1 случай на 270 новорожденных.
- При ВПС с тяжелыми нарушениями гемодинамики 50

 90 % новорожденных без хирургической коррекции умирают до 1 года, из них в первые 6 месяцев до 80%.

- Имеется тенденция роста распространенности ВПС и ВПР как в нашей стране, так и за рубежом. Растет число тяжелых и сложных пороков в общей структуре ВПС.
- 25-40% ВПС сочетаются с другими аномалиями развития, 30% детей с хромосомными аномалиями имеют ВПС.
- Число взрослых с ВПС в мире растет примерно на 5 % в год и уже давно превысило 1 миллион.

Наиболее часто встречаются следующие пороки:

- Дефект межжелудочковой перегородки (ДМЖП) 20-30 % всех случаев ВПС,
- Дефект межпредсердной перегородки (ДМПП)- 2,5-16%,
- Открытый артериальный проток (ОАП) -6-18%,
- Тетрада Фалло(ТФ) -5-10%
- Коарктация аорты (КоА)-5%
- Стеноз аорты- 5%
- Стеноз легочной артерии-10%
- Транспозиция крупных магистральных сосудов- (ТМС) 5%.

Критические периоды морфогенеза сердца

- Концепция критических периодов онтогенеза, характеризующихся повышенной чувствительностью организма к действию внешних и внутренних раздражителей, разработана Г.Светловым (1960).
- Им выделено 2 критических периода: первый совпадает с процессом имплантации оплодотворенной яйцеклетки, второй со временем формирования плаценты.
- Большинство эмбриологов считает критическим возраст с 14 (20, 28) дня от овуляции до 41 (50, 60) дня конкретно для сердечно-сосудистой системы эмбриона человека.

•

• Данные критические периоды были практически подтверждены в исследованиях Pliess (1962) и Kreipe (1967) на примере тератогенного воздействия талидомида.

Этиология ВПС

- 1. Мутация одного гена 2%-3%
- 2. Хромосомные нарушения 2%-5%
- 3. Факторы внешней среды 2-4%
- 4. Мультифакториальные 90%:
 - Применение лекарственных препаратов (тетрациклины, препараты содержащие эстрогены, барбитураты, препараты опия, препараты антиаритмического действия, противосудорожные, препараты лития)
 - Внутриутробные инфекции (вирус краснухи, гриппа, гепатита В, ЦМВ)
 - *Профессиональные вредности* (физические и химические факторы внешней среды, сера и фосфорорганические соединения)
- **Повышенная инсоляция** (солярии)
- Радиация, рентгеновское излучение
- **Вредные привычки** (алкоголь, никотин, наркотики)

Этиология ВПС

- В этиологии ВПС имеют значение *три группы факторов* (факторы риска рождения ребенка с ВПС).
- 1. Первичные генетические факторы: количественные и структурные хромосомные аномалии 5%, мутации единичного гена 2-3,5%.
- 2. **Тератогенные факторы внешней среды** (особенно опасно их воздействие на плод в критические периоды от 2-3 до 8-12 недель гестации) 3-5%.
- • внутриутробные инфекции (вирус краснухи, ЦМВ, вирусы Коксаки, вирусы гриппа и др.)
- • прием беременной женщиной лекарственных препаратов (антагонисты фолиевой кислоты, препараты лития, амфетамины, прогестины и др.)
- • употребление алкоголя;
- • контакты с токсическими веществами (кислоты, спирты, тяжелые металлы и др.)
- • неблагоприятные экологические факторы (ионизирующая радиация, загрязнение воды, почвы, воздуха мутагенными веществами и т. п.)
- • дефицит питания матери на ранних сроках беременности
- • возраст родителей
- заболевания и состояния самой матери (сахарный диабет, метаболические нарушения, тяжелый токсикоз первой половины беременности, заболевания сердечно-сосудистой системы)
- 3. Взаимодействие генетических факторов и неблагоприятных факторов внешней среды (мультифакториальное наследование) 90 %.

- Средовые факторы выступают как «провоцирующие» для «проявления» наследственной предрасположенности.
- Риск мультифакториального заболевания выше у родственников первого порядка, чем у родственников второго порядка. У родственников четвертого поколения риск практически равен общепопуляционному.
- Возвратный риск для родственников первого поколения равен корню квадратному из показателя популяционной частоты выявления данного заболевания. Риск повторного рождения ребенка с ВПС у родителей, уже имеющих ребенка с такой патологией, составляет 1-5%. Возвратный риск ВПС при двух больных детях в семье составляет 10%.

- Расчет риска возникновения ВПС у детей ведется на количество беременных, подвергшихся действию факторов риска, а не на количество новорожденных в исследуемой популяции.
- •При проведении оценки необходимо помнить, что риск для будущей популяции в эпидемиологическом отношении, даже если относительный риск конкретного заболевания высокий, может быть незначительным, если заболевание очень редкое.
- •На практике обычно используется показатель **относительного риска** (OP). Он считается достоверным, если равен или превышает 2.

Тератогенное воздействие на формирование ВПС оказывают: химические, физические и биологические факторы.

- Известно более 100 000 токсических субстанций, которые могут оказать тератогенное воздействие на плод и нарушить эмбриогенез (кардиогенез).
 - Химические тератогены подразделяются на лекарственные и индустриальные.
- К <u>лекарственным тератогенам</u> с высоким ОР развития ВПС относятся:
- -антиконвульсанты (вольпроевая кислота- ОР 18,4; карбамазепин ОР 43,4 и др.);
- -индометацин -ОР 73,5;
- -женские половые гормоны- ОР 2,7;
- -салицилаты ОР 6,6;
- - препараты лития ОР 10,3;
- -витамин А и его передозировка ОР 34,3 и многие другие лекарственные препараты.
- К химическим индустриальным тератогенам относятся:
- гербициды (ОР 58,8); мышьяк, свинец, хлорсодержащие соединения, кадмий, лаки, краски и др.
- Биологические факторы:
- заболевания матери (эпилепсия, сахарный диабет, фенилкетонурия гипертоническая болезнь, метаболические нарушения и др.);
- возраст родителей;
- прием кокаина и курение марихуаны отцом ребенка,
- злоупотребление беременной алкоголем (ОР = 47,4);
- внутриутробные вирусные и бактериальные инфекции(краснуха, герпес 1 и 2 типа, ЦМВ, токсоплазмоз, сифилис и др.).
- Физические факторы: радиация, шум более 82 дБ, вибрация, электромагнитное и рентгеновское излучения и др.

Классификация ВПС

- Существует более 90 вариантов ВПС и множество их сочетаний.
- •ВПС групповое понятие, что создает трудности при их классификации.
- Впервые ВОЗ была принята классификация болезней сердца у детей в 1970 году в Гронингене (Нидерланды), затем в 1976 году в Женеве была пересмотрена и дополнена.
- Данная классификация содержит раздел «Врожденные аномалии (пороки развития)» с рубриками «Аномалии луковицы сердца и аномалии закрытия сердечной перегородки», «Другие врожденные аномалии сердца», «Другие врожденные аномалии системы кровообращения».

Классификация Американской кардиологической ассоциации (AHA - American Heart Association).

- І) Ацианотичные ВПС:
- а) с обструкцией кровотоку (стеноз легочной артерии, стеноз аорты, коарктация аорты);
- •б) с лево-правым сбросом (ДМПП, ДМЖП, ОАП, атриовентрикулярная коммуникация).
- II) Цианотичные ВПС (тетрада Фалло, транспозиция магистральных артерий, атрезия трехстворчатого клапана, тотальный аномальный дренаж легочных вен, общий артериальный ствол).

Виды пороков сердца

(иние виние) (синие) синие) порожы

Тетрада Фалло

 Стеноз легочной артерии пороки "бледного" типа (бледные кожные покровы)

-ДМЖП

открытый Баталлов проток МуShared Коарктация аорты

Классификация Мардера

А. Пороки с обогащением малого круга кровообращения:

1. С цианозом:

- Аномальный дренаж легочных вен
- Синдром Эйзенменгера
- Транспозиция магистральных сосудов (ТМС , ТМА) **6,4**%
- Гипоплазия левого желудочка

2. Без цианоза:

- Дефект межжелудочковой перегородки (ДМЖП) 28%
- Дефект межпредсердной перегородки (ДМПП) 6,3%-37,1%
- Открытый артериальный проток (ОАП) 7,2%-34%
- Аномальный дренаж легочных вен (АДЛВ)
- Неполная форма атриовентрикулярной коммуникации (АВК)

Классификация Мардера

∥. Пороки с обеднением малого круга кровообращения (МКК):

1. С цианозом:

- Болезнь Фалло 6,1%
- Транспозиция магистральных сосудов + СЛА
- Атрезия трехстворчатого клапана
- Болезнь Эбштейна

2. Без цианоза:

- Изолированный стеноз легочной артерии

III. Пороки с препятствием кровотоку в большом круге кровообращения (БКК)

- Стеноз устья аорты
- Коарктация аорты –5,8%

IV. Без нарушения гемодинамики малого круга кровообращения:

- Декстракардия
- Аномалия расположения сосудов
- Болезнь Толочинова-Роже

Фазы течения ВПС

- Первичной адаптации
- Относительной компенсации
- Терминальная

Осложнения

- •Дистрофия
- •Анемия
- •Рецидивирующая пневмония
- •Инфекционный эндокардит
- •Тромбоэмболический синдром
- •Нарушения ритма и проводимости
- XCH
- •Легочная гипертензия

Выделение критических пороков периода новорожденности

- Понятие «критический порок сердца» применяется для обозначения ВПС, сопровождающихся развитием критических состояний в ближайшие часы или сутки после рождения.
- а) дуктус-зависимые критические пороки периода новорожденности:
- - дуктус-зависимое системное кровообращение (коарктация аорты, критический аортальный стеноз, синдром гипоплазии левого сердца (СГЛС);
- - дуктус-зависимое легочное кровообращение (атрезия легочной артерии, критический стеноз легочной артерии, АТК, ТФ);
- - дуктус-зависимое системное и легочное кровообращение ТМА; аномальное отхождение левой коронарной артерии от легочной артерии; тотальный аномальный дренаж легочных вен (в случае рестриктивного открытого овального окна).
- б) дуктус-независимые пороки сердца (ДМЖП, ДМПП, артерио-венозная коммуникация, ТАДЛВ, ДОС ПЖ, общий артериальный ствол, дефект аорто-легочной перегородки, единый желудочек, аномалия Эбштейна).

Классификация, разработанная в Институте сердечнососудистой хирургии им. А.Н. Бакулева АМН

- Классификация разработанная в Институте сердечно-сосудистой хирургии им. А.Н. Бакулева АМН основана на распределении ВПС с учетом их анатомических особенностей и гемодинамических нарушений и наиболее часто используется в клинической практике в нашей стране.
- Эта классификация выделяет 15 групп пороков.
- Из них наиболее часто встречаются 4 группы.
- 1.ВПС с повышенным лёгочным кровотоком: ДМЖП дефект межжелудочковой перегородки ДМПП дефект межпредсердной перегородки ОАП открытый артериальный проток Дефект аорто-лёгочной перегородки
- 2.ВПС с препятствием оттока крови из желудочков: Стеноз легочной артерии Стеноз аорты
- 3.ВПС с аномальным отхождением магистральных сосудов и нормальным расположением желудочков: Тетрада Фалло ТМС Общий артериальный ствол
- 4. Аномалии дуги аорты: КоА коарктация аорты Двойная дуга аорты.

Патогенез ВПС (патогенетическая классификация):

- Нарушение миграции мезенхимальной ткани приводит к порокам развития выносящих трактов сердца конотрункальным порокам сердца:
- общий артериальный ствол,
- транспозиция магистральных сосудов,
- двойное отхождение магистральных сосудов от правого желудочка,
- тетрада Фалло,
- перерыв дуги аорты типа В,
- дефект межжелудочковой перегородки 1 типа.

Нарушение сердечной гемодинамики (внутриутробно):

- синдром гипоплазии левого желудочка,
- коарктация аорты,
- клапанный аортальный стеноз,
- двухстворчатый аортальный клапан,
- вторичный дефект межпредсердной перегородки,
- открытый артериальный проток,
- клапанный стеноз легочной артерии
- дефект межжелудочковой перегородки II типа.

Гибель клеток:

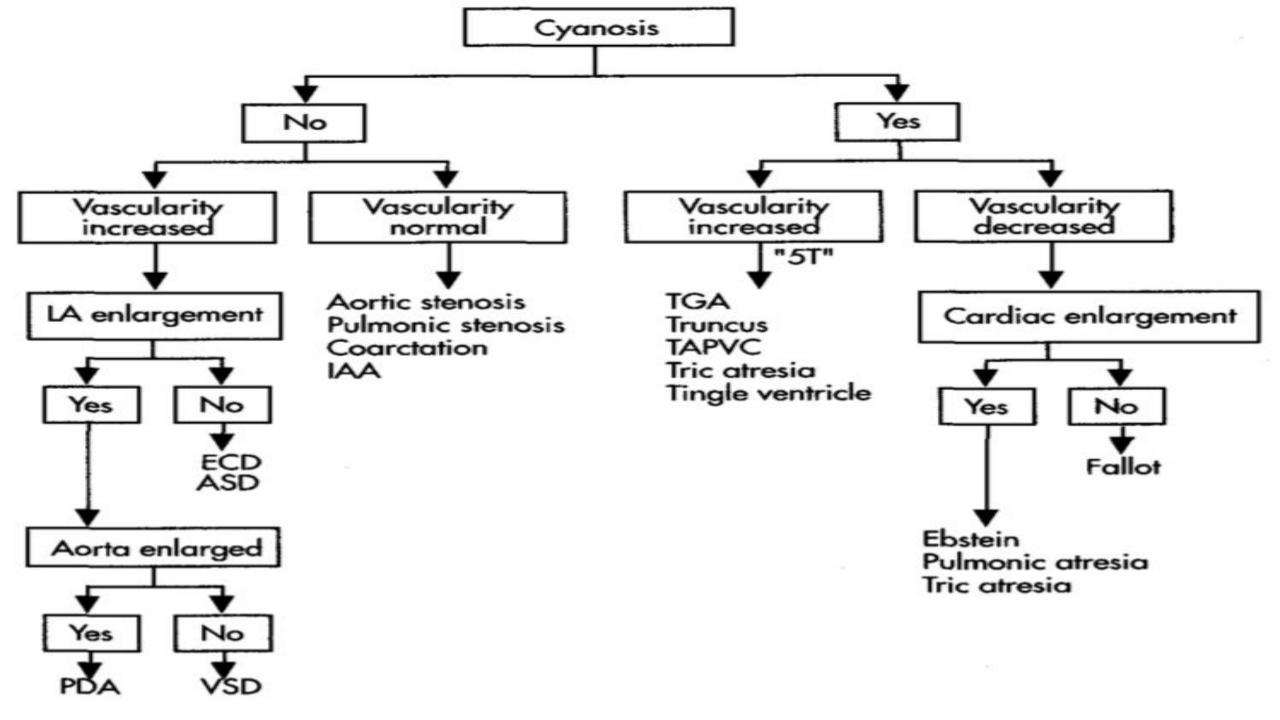
- Масса миокарда может увеличиваться в результате деления клеток, их миграции или продукции экстрацеллюлярного матрикса.
- Уменьшение сердечной массы происходит только путем гибели клеток. Этот процесс важен при формировании клапанов и трабекулярной части межжелудочковой перегородки.
- Аномалия Эбштейна
- Дефект межжелудочковой перегородки IVтипа.

Патология экстрацеллюлярного матрикса.

- Экстрацеллюлярный матрикс («кардиальный гель») представляет собой аморфный субстрат из гликозоаминогликанов, располагающийся между миокардом и эндокардом.
- Продукцию экстрацеллюлярного матрикса осуществляют клетки миокарда.
- Матрикс способствует формированию атриовентрикулярных клапанов и выносящего тракта желудочков.

- Открытый атриовентрикулярный канал.
- Дефекты межпредсердной перегородки.

КЛИНИЧЕСКАЯ КАРТИНА ВПС


• Клинические проявления ВПС определяются анатомией порока, степенью нарушения гемодинамики и адаптационно-компенсаторных механизмов, характером осложнений.

Ведущими симптомами в клинической картине ВПС являются:

- Цианоз (ТМА, ТФ, АТК, ТАДЛВ, ОАС);
- *Гипероксический тест*: позволяет дифференцировать причину центрального цианоза. Чувствительность теста 76,5%; специфичность 99%. Правила проведения теста: тест проводится по истечении первых суток жизни. В противном случае вероятность ложноположительного результата составляет 0,5% (после 24 часов жизни 0,05%); тест должен проводиться с использованием пульсоксиметра, не зависящего от двигательной активности ребенка. Возможно применение одноразовых и многоразовых датчиков; измерение проводится на правой руке и любой ноге. Может проводиться одновременно или последовательно; тест должен проводиться обученным и квалифицированным персоналом.

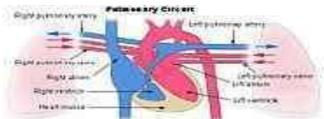
Положительным считается тест, отвечающий одному из трех критериев:

- 1) SaO₂ менее 90%;
- 2) SaO₂ менее 95% при трехкратном почасовом измерении на верхних и нижних конечностях в течение 3-х часов;
- 3) разница между SaO_2 на верхних и нижних конечностях составляет более 3% (SaO_2 правой руки $> SaO_2$ любой ноги).

Кардиогенный шок (критическое состояние)

- 2) кардиогенный шок (критическое состояние) наиболее часто развивается при пороках, сопровождающихся обструкцией выводного отверстия ЛЖ, при дуктус-зависимых пороках и ТАДЛВ с обструкцией венозного возврата;
- 3) сердечная недостаточность (ДМЖП, ОАП, АВК, ТАДЛВ, дефект аорто-легочной перегородки и другие).
- Критическое состояние характеризуется острым дефицитом сердечного выброса, быстрым прогрессированием сердечной недостаточности, кислородным голоданием тканей с развитием декомпенсированного метаболического ацидоза и нарушением функций жизненно важных органов.
- В основном критические состояния при ВПС возникают в период перехода от пренатального к постнатальному типу кровообращения, когда прекращается функционирование фетальных коммуникаций: открытого артериального протока (ОАП) и открытого овального окна.

К основным причинам развития критического состояния у больного с ВПС относятся:

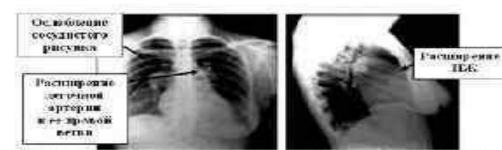

- 1) закрытие ОАП при дуктус-зависимом кровообращении;
- 2) резкая обструкция кровотока (легочный стеноз, аортальный стеноз, коарктация аорты, синдром гипоплазии левого сердца).
- Более 50-60% всех ВПС относятся к <u>порокам с обогащением малого круга кровообращения</u> (МКК), протекающим преимущественно без цианоза и с артериовенозным шунтом крови. Из них наиболее часто диагностируют ДМЖП 20% всех случаев ВПС, ДМПП- 2,5-16%, ОАП -6-18%,

Причины сердечной недостаточности (СН) при ВПС

- Нагрузка большими объемами перекачиваемой крови (ДМПП, ДМЖП, аномальный дренаж легочных вен (АДЛВ) и др.)
- ■Критическая нагрузка сопротивлением (стеноз аорты (Ао), коарктация аорты (КоА), легочное сердце (ЛС)
- Гипоксическое и ишемическое повреждение миокарда (ТМС, аномальное отхождение коронарной артерии)

Легочная гипертензия- самое тяжелое и опасное осложнение данных ВПС .Среди часто встречающихся врожденных пороков сердца легочная гипертензия в 55-60% осложняет ДМЖП уже в раннем возрасте, в 20-27% -ДМПП, в более старших возрастных группах и в 9-35% осложняет открытый артериальный проток .Легочная гипертензия (ЛГ) является грозным и тяжелым осложнением естественного течения ВПС. Она существенно ухудшает прогнозы для жизни, исход оперативного лечения и выживаемость пациентов. **Легочная гипертензия** (ЛГ) - это состояние, при котором среднее давление в легочной артерии (ДЛА) более или равно 25 мм рт.ст. в покое по данным катетеризации правых отделов сердца (КПОС). Нормальное среднее ДЛА в покое – 14 +- 3 мм рт.ст.с верхней границей нормы 20 мм рт.ст. В 2011 году в Панаме рабочая группа Института изучения заболеваний сосудов легких внесла предложение о формировании терминологии и классификации ЛГ у детей. Согласно их рекомендациям, обязательным критерием гипертензионной сосудистой болезни легких у детей является повышение легочного сосудистого сопротивления более 3 ед. Вуда * м².

В некоторых случаях это обусловлено тем, что при лево-правых системно-легочных шунтах, повышение давления в легочной артерии не сопровождается увеличением легочного сосудистого сопротивления, и у этих детей необходима скорейшая оперативная коррекция порока, а не медикаментозное лечение.



Лёгочная гиперте́нзия

- прогрессивное повышение лёгочного сосудистого сопротивления, что ведёт к правожелудочковой недостаточности и преждевременной смерти.
- Классификация
- 1. Идиопатическая
- 2. Наследственная
- 3. Лёгочная гипертензия, обусловленная поражением левых камер сердца (пороки)
- 4. Легочная гипертензия, ассоциированная с заболеваниями легких и/или гипоксемией
- 5. Хроническая тромбоэмболическая легочная гипертензия
- 6. Легочная гипертензия со смешанными механизмами
- 7. Хроническая тромбоэмболическая легочная гипертензия
- 8. Легочная гипертензия со смешанными механизмами (васкулиты, ХПН, опухоль и др)

Клиника: одышка, кашель, кровохарканье, акцент 2 тона на легочной артерии(2межреберье слева), верифицируется на ЭхоКГ— давление более 25 мм ртст

- Функциональная классификация легочной гипертензии
- Класс I пациенты без ограничений физической активности
- Класс Ігпациенты со сниженной физической активностью. (одышку, слабость, боль в грудной клетке,)
- Класс III пациенты с выраженным ограничением физической активности
- Класс IV признаки правожелудочковой недостаточности, неспособность к физической активности.
- Осложнения: ХСН, ТЭЛА, Гипертонические кризы в системе
- легочной артерии, которые проявляются приступами отека
- легких
- Лечение:оксигенотерапия, антагонисты кальция(нифедипин,
- Амлодипин), бозентан 62,5 мг 2 раза в день,
- силденафил 200 мг в день,

Пис. з. Прямае и правез основа рештеністрамми органов грудной клютки при иднопатическай легом юй вивертенени (ПЖ – правый желудомен).

ЛГ формируется в три основные стадии:

- 1) Гиперволемическая стадия, когда происходит большой артериовенозный сброс крови в МКК при незначительном защитном спазме сосудов. Имеет место несоответствие емкости сосудистого русла легких объему поступающей в них крови.
- 2) Смешанная стадия повышение давления в легочной артерии обусловлено защитным спазмом сосудов легких, ограничивающим артериовенозный сброс. Вазоконстрикция является важным механизмом адаптационной системы организма.
- 3) Склеротическая стадия имеют место распространенные необратимые изменения легочных сосудов. Склеротическая стадия легочной гипертензии определяет прогнозы результатов хирургической коррекции порока.
- Выделение стадий ЛГ имеют колоссальное практическое значение, т.к. помогают определять тактику консервативного лечения и уточнять рациональные сроки оперативного вмешательства, а также делать прогнозы результатов хирургической коррекции порока.

По классификации Ф. Углова и А. Попова **легочная гипертензия** делится на степени в зависимости от величины расчетного давления в легочной артерии (РДЛА).

Так, при I степени оно составляет 25-50мм.рт.ст., при II степени 51-75 мм рт.ст., при III степени 76-110 мм рт.ст и при IV степени более 111 мм рт.ст. Предварительно диагностировать ВПС и наличие тяжелой ЛГ можно с помощью такого неинвазивного метода, как ЭХОКГ, но наиболее точным методом, так называемым «золотым стандартом» диагностики ЛГ, является инвазивное измерение давления в правых отделах сердца посредством их катетеризации.

Одним из методов, нашедшим широкое распространение, является КТ - ангиокардиография, произведенная на мультиспиральном компьютерном томографе. Основная роль его заключается в том, чтобы продемонстрировать особенности вторичных форм ЛГ. Позволяет получить необходимую информацию об анатомии порока, состоянии легких и других органов грудной клетки.

Патогенетические закономерности ВПС с гиперволемией МКК

•Величина сброса крови через дефект определяется размером сообщения и соотношением сосудистых сопротивлений обоих кругов кровообращения, т.е. чем значительнее величина дефекта и выше разница давления между аортой (Ао) и легочной артерией (ЛА), тем больше величина артериовенозного (лево-правого) шунта и выраженнее гиперволемия МКК.

Патогенетические закономерности ВПС с гиперволемией МКК

- Развивающиеся с течением времени под влиянием повышенного легочного кровотока и высокого давления вторичные склеротические изменения легочных сосудов ведут к резкому увеличению легочно-сосудистого сопротивления, выравниванию разницы между давлением в легочной артерии (ЛА) и Ао и извращению направления сброса крови («смене шунта»), который становится веноартериальным (право-левым).
- Смена шунта проявляется возникновением сначала транзиторного, а затем постоянного цианоза (клинический маркер легочной гипертензии у пациентов с ВПС бледного типа)

Одышка

Одышка – ранний и частый симптом сердечной недостаточности

Клинически:

Одышка характеризуется нарушением глубины, частоты и ритма дыхания, возникает сначала при физической нагрузке, а при ухудшении насосной функции сердца - в состоянии покоя.

Патогенез одышки

В основе одышки при кардиальной патологии лежит:

• уменьшение ударного объема

сердца

- застой крови в малом круге кровообращения
- гипоксия органов и тканей
- метаболический ацидоз
- уменьшению щелочных резервов
- возбудимость дыхательного

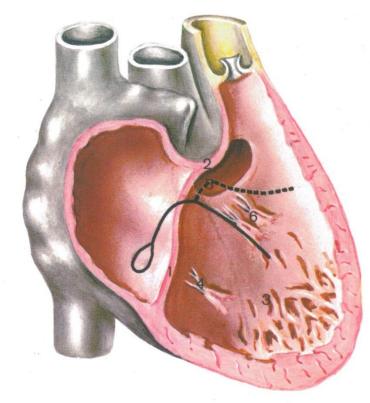
центра

Диагностика ВПС

- 1. Пренатальная диагностика:
- • подробный сбор анамнеза у беременной женщины и выявление факторов риска рождения ребенка с аномалиями развития
- • пренатальный ультразвуковой скрининг в декретированные сроки беременности
- • при подозрении на порок развития проводится прицельное УЗИ плода на аппарате экспертного класса
- • проведение пренатального консилиума, целью которого является определение сроков и места родоразрешения, информирование родителей о имеющемся пороке развития, предполагаемой тактике ведения ребенка после рождения, возможной кардиохирургической коррекции, формирование предварительного прогноза

• На правой руке (предуктально) производится забор артериальной (лучевая артерия) или капиллярной крови на газовый состав и КЩС. Назначается инсуффляция кислорода (100%) через маску в течение 10-15 минут, затем вновь производится контрольный забор артериальной или капиллярной крови на газовый состав и КЩС.

Признается, что **гипероксидный тест** не приводит к закрытию ОАП и его проведение не противопоказано при подозрении на наличие дуктус-зависимой патологии. Однако отсутствие эффективности кислородотерапии указывает на вероятность дуктус-зависимого кровообращения. Поэтому после проведения гипероксидного теста у новорожденного с подозрением на дуктус-зависимое кровообращение необходимо тотчас прекратить подачу кислорода. Такие дети нуждаются в незамедлительной внутривенной инфузии простагландина Е1.


Алгоритм обследования детей с подозрением на ВПС

- OAK
- OAM
- Биохимический анализ крови
- ЭКГ
- Рентгенография ОГК в трех проекциях
- ЭХО-КГ (в т.ч. с контрастированием)
- Зондирование полостей сердца
- Ангиография
- КТ, МРТ (при необходимости)

Дефект межжелудочковой перегородки (ДМЖП)

ДМЖП -

врожденный порок развития перегородки, в результате чего формируется сообщение между левым и правым желудочками.

2.64. Перимембранозный дефект мышечной части перегородки и ограничивающие его структуры.

1—центральное фиброзное тело и линия прикрепления перегородочной створки трехстворчатого клапана; 2—желудочково-инфундибулярная складка; 3—трабекулярная перегородка; 4—перегородка приточного отдела; 5—остатки перепончатой части перегородки; 6—медиальная сосочковая мышца. Пунктиром обозначены треугольник Коха и ход прободающей ножки предсердно-желудочкового пучка. Верхняя граница дефекта может быть образована частично фиброзным кольцом клапана аорты, примыкающим к дефекту сзади и невидимым на рисунке.

Анатомические варианты ДМЖП:

- Перимембранозный дефект (80%)
- **Инфундибулярный дефект** (подлегочный 5-8%)
- Мышечный дефект (трабекулярный 5-20%)

Размер ДМЖП

- om 1 до 30 мм и более; дефект имеет различную форму (круглый, элипсовидный)

Выделяют:

- большой ДМЖП его величина сходна с диаметром аорты или превышает его
- небольшой или средних размеров меньше диаметра аорты, обычно 0,5-1,5 см

Дефект межжелудочковой перегородки

- ДМЖП врожденный порок сердца, характеризующийся наличием сообщения (отверстия) между правым и левым желудочком. Перимембранозные дефекты составляют 61,4-80 % всех случаев ДМЖП, мышечные дефекты-5-10%.
- Клинические проявления. Малые ДМЖП имеют скудную клиническую картину.
- <u>Большие ДМЖП</u> имеют два пика клинических проявлений. В течение первого года ведущим синдромом является сердечная недостаточность. Она обусловлена максимальной величиной артериовенозного сброса и неразвитостью механизмов адаптации. Второй пик клинических проявлений обусловлен прогрессированием легочной гипертензией.
- Детей беспокоит одышка, сердцебиения, утомляемость, связанные с физической нагрузкой. Отмечается плохая прибавка массы тела и частые инфекционные заболевания легких.

Гемодинамика ДМЖП

- В первые дни жизни сброс крови может быть перекрестным, но вскоре изменяется структура легочных сосудов, падает легочное сопротивление, в результате чего давление в большом круге намного превышает таковое в малом.
- Артериальная кровь сбрасывается из левого в правый желудочек и ЛА, откуда возвращается в левые отделы сердца.
- Особенности развития гипертензии в малом круге кровообращения такие же, как и при других сбросовых пороках.

КЛИНИКА ДМЖП

Признаки тотальной сердечной недостаточности:

гепатоспленомегалия, одышка, тахикардия, отечный синдром, застойные влажные хрипы в легких.

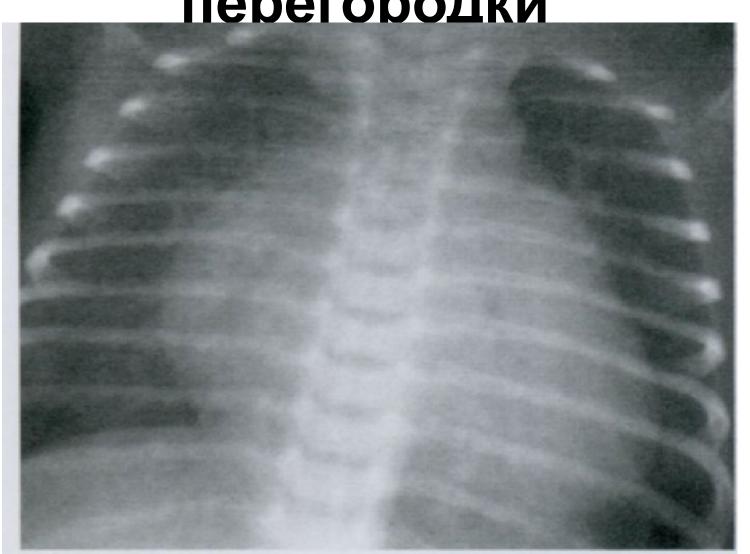
Общие симптомы:

гипотрофия, отставание в физическом развитии, выраженная потливость, бледность, мраморность кожных покровов с небольшим периферическим цианозом.

В более старшем возрасте появляются: боли в сердце, сердцебиение.

Физикальные данные: раннее формирование сердечного горба. При пальпации определяется систолическое «кошачье мурлыканье» по середине грудины вдоль левого края.

КЛИНИКА ДМЖП


Аускультативно:

- <u>при небольшом ДМЖП</u>: выслушивается интенсивный грубый голосистолический шум слева у грудины; II тон может иметь физиологическое расщепление;
- при умеренном ДМЖП: выслушивается голосистолический шум в нижней части грудины слева и сопровождается систолическим дрожанием; может выслушиваться короткий третий тон и среднедиастолический щелчок на верхушке;
- при большом ДМЖП: возможен короткий систолический шум легочного изгнания в верхней парастернальной области слева; может выслушиваться продолжительный голосистолический шум трикуспидальной недостаточности
- При постепенном увеличении давления в правом желудочке шум становится более низким коротким и мягким.

Диагностика ДМЖП

- R- грамма: при средних и больших дефектах легочный рисунок усилен по артериальному руслу, дуга ЛА выбухает, Ао не изменена или гипопластична, кардио-торакальный индекс (КТИ) более 50%.
- **ЭКГ**: при небольших дефектах ЭКГ нормальная, либо с признаками увеличенной активности миокарда левого желудочка (ЛЖ);
- по мере повышения давления в легочной артерии ЭОС смещается вправо, к гипертрофии миокарда ЛЖ присоединяются признаки перегрузки правого желудочка (ПЖ).
- При большом дефекте и выраженной легочной гипертензии отмечается ЭКГ признаки гипертрофии обоих желудочков или изолированная гипертрофия правого желудочка.
- **ЭХО-КГ**: дает информацию о локализации, размере, количестве дефектов; выраженности объемной перегрузки левого желудочка, степени легочной гипертензии.
- Большие дефекты определяются при 2-х мерном исследовании, а небольшие с помощью доплеровского исследования.

Дефект межжелудочковой перегородки

Ventricular septal defect. B-mode, apical four-chamber position

Лечение

- **Консервативное**: направлено на уменьшение явлений недостаточности кровообращения, лечение осложнений (пневмонии, гипертрофии).
- **Хирургическая коррекция**: ушивание или пластическое закрытие ДМЖП (при помощи заплаты Gore-Tex) в условиях искусственного кровообращения.
- ■Спонтанное закрытие дефекта возможно у детей до 1 года, реже- после 2 лет (до 29%, чаще при мышечных ДМЖП в 80%).
- Транскатетерная окклюзия дефекта с помощью окклюдера Amplatzer.

Дефект межжелудочковой перегородки

- *Тактика лечения* определяется гемодинамической значимостью и известным для него прогнозом. Лечение сердечной недостаточности проводится диуретиками, сердечными гликозидами, ингибиторами АПФ.
- Показаниями к хирургическому лечению являются сердечная недостаточность и дыхательная недостаточность в первые 3 месяца жизни, задержка физического развития, не поддающиеся лечению.
- У детей старше 6 месяцев хирургическое лечение при подаортальном дефекте показано при нарастании общелегочного сосудистого сопротивления.
- Закрытие дефекта окклюдером рекомендуется в тех случаях, когда дефект находится на достаточном расстоянии от трехстворчатого и аортального клапанов.
- Операцию по поводу изолированного ДМЖП рекомендуется выполнять путем ушивания или закрытия заплатой из биологического (ксено- или аутоперикарда) или синтетического материала (дакрона, политетрафторэтилена).

Открытый артериальный проток. (ОАП)

ОАП - это сосуд, соединяющий аорту и легочную артерию, «сохранивший нормальную для плода структуру после истечения срока его закрытия».

Открытый артериальный проток

Частота. ОАП наблюдается среди 5-10% всех детей с ВПС, если не учитывать недоношенных новорожденных, у которых наличие ОАП - типичная проблема.

У детей с массой тела при рождении меньше 1750 г в 45% определяется наличие персистирующего артериального протока, при массе тела меньше 1200 г - в 80%.

Проток обычно представляет собой существующий в норме внутриутробно сосуд, соединяющий ствол легочной артерии и нисходящую аорту, обычно на 5-10 мм дистальнее устья левой подключичной артерии.

Проток обычно имеет более узкое устье в легочной артерии. Размеры и форма протока широко варьируют.

Анатомия ОАП

- Проток отходит от Ао на уровне левой подключичной артерии и в большинстве случаев впадает в ствол ЛА в месте его деления на две ветви или в начальную часть левой ветви; реже встречается право- или двусторонний проток.
- Проток может быть длинным, узким и извилистым или коротким и широким, диаметр его составляет от 2-3 до 30 мм, чаще 3-15 мм, длина 3-25мм.
- Систолодиастолический шум слышен, если диаметр протока превышает 4мм.
- Артериальный проток считается аномалией, если он по клиническим данным функционирует спустя 1-2 недели после рождения.
- Спонтанное закрытие протока после 3-х месяцев жизни встречается редко.

Анатомические типы протока: цилиндрический, воронкообразный, окончатый, аневризматический.

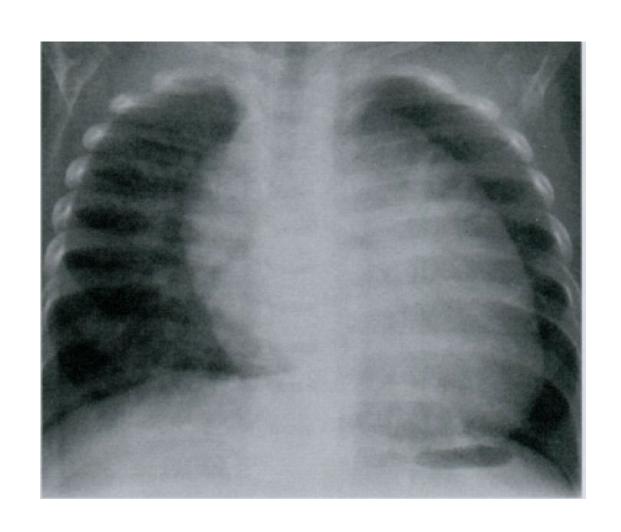
Гемодинамика ОАП

- Сброс оксигенированной крови из аорты в легочную артерию происходит как в период систолы так и диастолы.
- Артериальная кровь сбрасывается в систему МКК, вызывая его перегрузку, а затем вновь возвращается в левое сердце.
- Утечка крови из системы большого круга ведет к снижению диастолического давления.
- Сердечный выброс ЛЖ увеличивается, что ведет к его перегрузке и гипертрофии.
- Увеличение МОК малого круга вызывает развитие ЛГ, при нарастании которой разница в давлении между Ао и ЛА уменьшается, уменьшается сброс крови из Ао в ЛА.
- Значительное повышение сосудистого сопротивления в системе МКК ведет к гипертрофии ПЖ.
- Если давление в ЛА становится выше, чем в Ао, то изменяется направление шунта: сначала возникает перекрестный сброс, а затем справа налево.

Клиника ОАП

Клинические проявления: при маленьком ОАП пациенты обычно не имеют симптомов. При большом ОАП характерны признаки сердечной недостаточности (плохая прибавка в весе, одышка и тахикардия, частые респираторные инфекции, пневмонии).

- Отставание в физическом и психомоторном развитии.
- Снижение толерантности к физической нагрузке (при кормлении, ходьбе, беге), появляется транзиторный цианоз.
- Определяется сердечный горб, расширение границ сердца влево, на основании сердца- систолодиастолическое дрожание.
- Характерен громкий I тон, акцент и раздвоение II тона.
- Сразу после рождения ребенка шум отсутствует, к концу первой недели жизни появляется систолический шум.
- В дальнейшем шум становится типичным систолодиастолическим (шум «мельничного колеса», «машинный» шум), лучше выслушивается во ІІ м/р слева у грудины и на спине.
- У детей первых месяцев жизни шум определяется ниже (в 3-4 м/р) и тогда он трудно отличим от шума при ДМЖП и аорто-легочном свище.

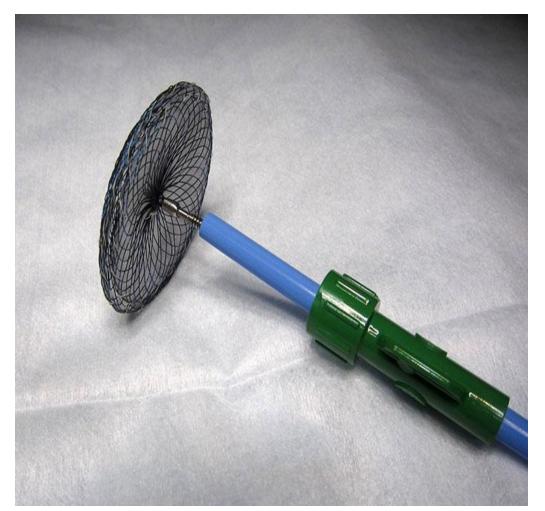

Клиника ОАП

- Признаки сердечной недостаточности: одышка, тахикардия, гепатоспленомегалия.
- После 3-5 лет возможны жалобы на боли в сердце, сердцебиения, обмороки.
- САД N или умеренно повышено, ДАД- снижено до 20-30-0 мм рт. ст.
- При узких и длинных ОАП единственным проявлением порока с первых дней жизни может быть систоло-диастолический шум на основании сердца, развитие ребенка в раннем возрасте может не страдать, клиническая манифестация порока возможна к 5-6 годам жизни.
- ■При прогрессировании ЛГ систоло-диастолический шум ослабевает или исчезает, появляется шум относительной недостаточности клапана ЛА (шум Грехема-Стилла).

Диагностика ОАП

- R-логическое исследование: отмечается усиление легочного рисунка в результате гиперволемии, а затем и гипертензии в сосудах малого круга кровообращения (МКК), выбухание дуги легочной артерии (ЛА), увеличение левого предсердия (ЛП) и левого желудочка (ЛЖ), расширение восходящей части аорты.
- ЭКГ: при небольшом сбросе через проток может не изменяться;
 - при большом лево-правом сбросе крови определяется нормограмма, реже отмечается отклонение ЭОС влево, у больных с выраженной легочной гипертензией отклонение ЭОС вправо, признаки перегрузки левых камер сердца;
 - при выраженной легочной гипертензии гипертрофия обоих желудочков;
 - нарушения сердечного ритма и проводимости.
- **ЭХО-КГ**: обычно удается визуализировать проток, систолический поток в ЛА на уровне бифуркации. Доплеровское исследование позволяет определить гемодинамическую ситуацию, направление шунта и градиент давления.

Открытый артериальный проток

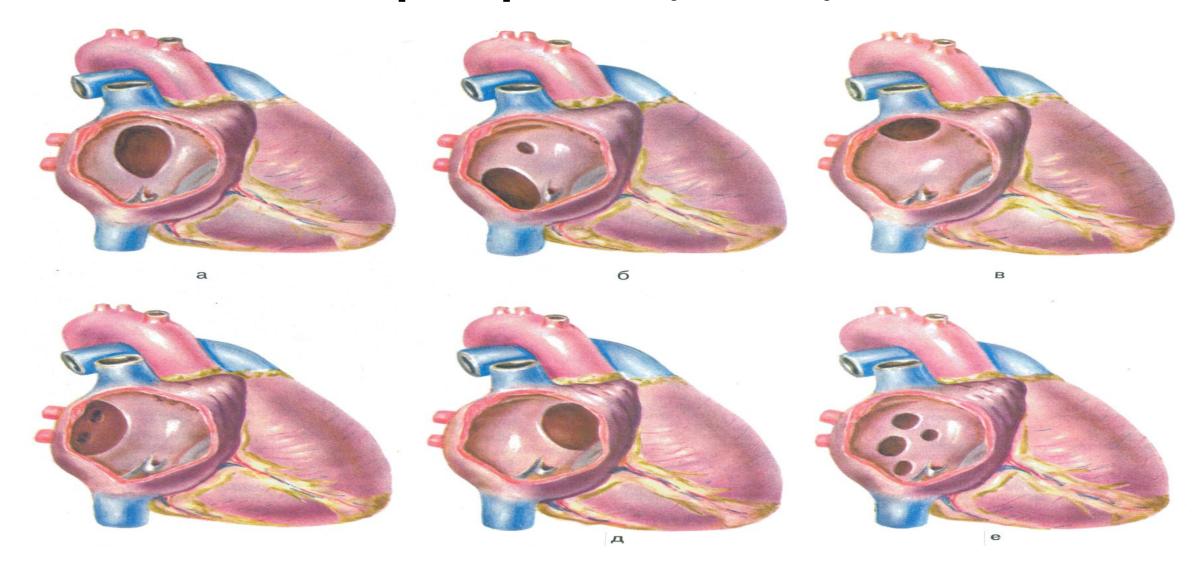



Открытый артериальный проток

- Прогноз. Спонтанное закрытие ОАП может быть отсроченным у нормального новорожденного, однако редко наблюдается после 1 месяца жизни. При большом шунте развивается сердечная недостаточность, повторные пневмонии, которые могут привести к смерти в раннем возрасте. Наличие ОАП у недоношенного новорожденного в сочетании с незрелостью легочной паренхимы часто ведет к сердечной недостаточности, бронхолегочной дисплазии, зависимости от искусственной вентиляции легких. При отсутствии лечения (медикаментозного или хирургического), направленного на закрытие ОАП, такие состояния сопровождаются высокой летальностью.
- **Лечение**. Индометацин применяется для закрытия ОАП у недоношенных новорожденных. Введение индометацина не эффективно у доношенных новорожденных. Наличие ОАП, независимо от размеров,

Лечение ОАП

- Недоношенным детям с большим ОАП, новорожденным первых двух недель жизни назначают в/в индометацин (ингибитор простагландинов Е2 и J2) 0,1-0,25 мг/кг каждые 12 часов в первые 10-14 дней жизни (под контролем ЭХО-КГ).
- **Консервативное**: лечение недостаточности кровообращения (НК) (дигоксин, мочегонные препараты, ингибиторы АПФ), кардиотрофические препараты
- **Транскатетерная окклюзия ОАП** окклюзия с использованием колец Gianturco, колец с контролируемым механизмом освобождения (Duct-Occlud), пособия Amplatzer.
- Хирургическая коррекция лигация протока или лигация с рассечением ОАП.



Окклюдеры

Внешний вид спирали

Дефект межпредсердной перегородки (ДМПП)

Дефект межпредсердной перегородки (ДМПП)

ДМПП – это аномальное сообщение между двумя предсердиями – является результатом ненормального развития первичной и вторичной межпредсердных перегородок и эндокардиальных валиков.

Формы ДМПП

- 1. Первичный дефект межпредсердной перегородки (большие по размеру дефекты 1/3-1/2 перегородки, в нижней части перегородки)
- 2. Вторичный дефект межпредсердной перегородки (вследствие недоразвития вторичной МПП, размеры-2-5-20-30 мм)
- 3. Открытое овальное окно
- 4. Полное отсутствие межпредсердной перегородки.

Анатомическая классификация ДМПП

- 1. Дефект овальной ямки или центральный дефект (вторичный ДМПП) стенка межпредсердной перегородки полностью окружает дефект.
- 2. Дефект венозного синуса (дефект верхней полой вены, высокий дефект) обычно 2-3 см в диаметре, лежит непосредственно ниже устья верхней полой вены и в стороне от овальной ямки. Верхней и часто задней границ нет, дефекту обычно сопутствует частичный аномальный дренаж правых легочных вен.
- 3. Дефект у нижней полой вены, расположен у основания перегородки предсердия так что нижний край перегородки нависает над отверстием нижней полой вены, которая сообщается больше с левым предсердием, дефект обычно большой (2-3 см); при отсутствии заднего края одна или несколько легочных вен могут дренироваться больше в правое предсердие, чем в левое, так называемый ложный аномальный дренаж легочных вен.

Анатомическая классификация ДМПП (продолжение)

- **4. ДМПП в сочетании с левой верхней полой веной, впадающей в левое предсердие**, дефект располагается в том месте, где в норме имеется коронарный синус.
- 5. Общее предсердие полное отсутствие межпредсердной перегородки или наличие только рудиментарных элементов ее, атриовентрикулярные клапаны чаще расщеплены, рже сформированы нормально, межжелудочковая перегородка интактна, нередко сочетается с аспленией.

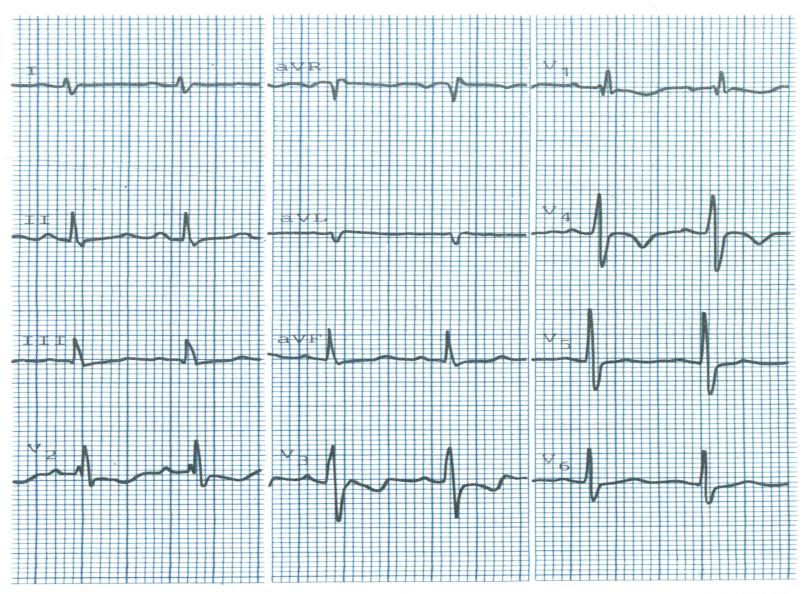
6. Дефекты, захватывающие область атриовентрикулярного клапана:

- Первичный дефект в изолированном виде встречается редко, обычно сочетается с расщеплением атриовентрикулярных клапанов;
- Открытый общий атриовентрикулярный канал.

Гемодинамика ДМПП

- При наличии дефекта происходит аномальный сброс крови из ЛП в правое предсердие (ПП) (по градиенту давления и вследствие физиологической растяжимости и податливости ПП и ПЖ).
- Развивается гиперволемия малого круга кровообращения, диастолическая перегрузка и дилатация ПЖ.
- Наблюдается расширение легочного ствола, ЛП также может быть расширенным.
- Левый желудочек остается нормальных размеров.
- В поздних стадиях вследствие развития легочной гипертензии (в 1,8-27% случаев) возникает перекрестный сброс, а затем постоянный из ПП в ЛП.

КЛИНИКА ДМПП


- У детей с небольшими ДМПП порок протекает бессимптомно.
- До 2-3 лет симптоматика может быть скудной.
- Характерны частые ОРВИ, рецидивирующие бронхиты, пневмонии; умеренное отставание в физическом развитии; возможны головокружения, обмороки.
- При значительной объемной перегрузке легочной циркуляции порок проявляется у новорожденных и манифестирует застойной сердечной недостаточностью.
- Характерны: расширение границ сердца вправо, усиленный І тон в области ТК и стойкое расщепление ІІ тона над ЛА.

КЛИНИКА ДМПП

- Выслушивается систолический шум средней интенсивности, не очень грубый, без выраженной проводимости, с локализацией во II
 —III межреберье слева у грудины (лучше в горизонтальном положении);
 - с возрастом (обычно к 5-7 годам) интенсивность шума усиливается, нередко присоединяется короткий мезодиастолический шум во II— III межреберье слева.
- Мезодиастолический шум свидетельствует об умеренном или большом дефекте.
- У больных ДМПП на верхушке могут выслушиваться клики и поздний систолический шум признаки пролапса митрального клапана (он имеет общие с ДМПП механизмы возникновения).
- АД чаще нормальное.

Диагностика ДМПП

- •R-грамма: усиление легочного рисунка; ствол ЛА расширен, выбухает; тень сердца увеличена в поперечнике за счет правых отделов, талия сглажена, верхушка закруглена и приподнята.
- •ЭКГ: признаки перегрузки правых отделов сердца;
 - у 50-95% детей определяется неполная блокада правой ветви предсердно-желудочкового пучка Гиса;
 - во 2-3 отведениях отмечается увеличенный заостренный зубец P;
 - возможно замедление A-V проводимости.
- •**ЭХО-КГ**: позволяет выявить дефект межпредсердной перегородки, измерить величину дефекта и определить его расположение

2.39. Электрокардиограмма больного с вторичным ДМПП.

Лечение

■Консервативное: лечение НК (дигоксин, мочегонные препараты, ингибиторы АПФ), кардиотрофические препараты.

■ **Хирургическое** (в возрасте 2-4 лет): ДМПП закрываются ушиванием под умеренной гипотермией или пластикой в условиях искусственного кровообращения.

• Транскатетерная окклюзия дефекта.

Тетрада Фалло (ТФ)

- Это самый частый цианотический порок, наблюдаемый после первого года жизни.
- Патанатомия.
- Оригинальное описание ТФ, как комбинация четырех признаков (стеноз выводного отдела правого желудочка, ДМЖП, декстрапозиция аорты, гипертрофия миокарда правого желудочка) сократилась до описания двух основных компонентов: ДМЖП и стеноза выходного тракта правого желудочка. ДМЖП при ТФ большой, не рестриктивный, занимает всю субаортальную область, обычно равен или больше диаметра аорты. В 3% случаев наблюдаются множественные ДМЖП. Обструкция выхода из правого желудочка наблюдается у 75% больных на уровне выходного тракта. К ней присоединяется в 30% стеноз клапана легочной артерии. Лишь у 10% больных стеноз ограничивается лишь легочным клапаном. Еще у 15% больных клапан легочной артерии атрезирован, как крайняя форма патологии в этом спектре.
- Клинические проявления. Систолический шум выслушивается сразу после рождения.
- Большинство пациентов имеют цианоз сразу после рождения. Одышка при нагрузке, гипоксические приступы развиваются позже у детей с умеренным цианозом.
- Сердечная недостаточность не характерна. Дети в раннем возрасте с ацианотической формой ТФ могут быть бессимптомны, или даже показывать признаки сердечной недостаточности из-за лево-правого шунта.

Клинико – анатомические варианты порока

- □Тетрада Фалло с атрезией устья легочной артерии
- □Классическая форма с различной степенью стеноза
- □Бледная форма тетрады Фалло.

Гемодинамика при тетраде Фалло

- При выраженном стенозе и большом ДМЖП благодаря препятствию току крови из правого желудочка в МКК значительная часть венозной крови поступает в аорту.
- При умеренном стенозе легочной артерии препятствие на пути тока крови из правого желудочка в МКК не столь значительно, кровь из левого желудочка через ДМЖП поступает в правый желудочек; Минутный объем крови МКК увеличивается.
- При гипоплазии и атрезии устья ЛА венозная кровь поступает в малый круг кровообращения, через ОАП, а после его закрытия – через коллатеральные сосуды.

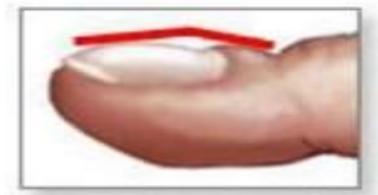
Компенсаторные механизмами, уменьшающие гемодинамические нарушения:

- Развитие коллатеральной сети сосудов
- Развитие полицитемии.

Клиника тетрады Фалло

- Одышечно-цианотические приступы (возникают, протекая наиболее тяжело в возрасте от 6 до 24 месяцев, на фоне относительной анемии без высокого уровня гематокрита).
- Одышка выражена по типу диспноэ.
- Симптом «часовых стекол» и «барабанных палочек» появляется в зависимости от степени гипоксемии на первом втором году жизни.
- Толерантность к физической нагрузке снижена (дети часто присаживаются на корточки или лежат в постели с приведенными к животу ногами).
- Повторные ОРВИ,
- Кариес зубов,
- Хронический тонзиллит, гайморит.

Тетрада Фалло:


- дефект межжелудочковой перегородки
- расположение аорты над ДМЖП
- затруднение оттока крови из правого желудочка (гипоплазия легочной артерии)
- гипертрофия правого желудочка Симптомы:
- Цианоз
- Замедление физического развития
- Одышка при нагрузках
- Полицитемия
- Бэрэбэнные папонии"

www2.fesmu.ru

Normal angle of nail bed

Distorted angle of nail bed

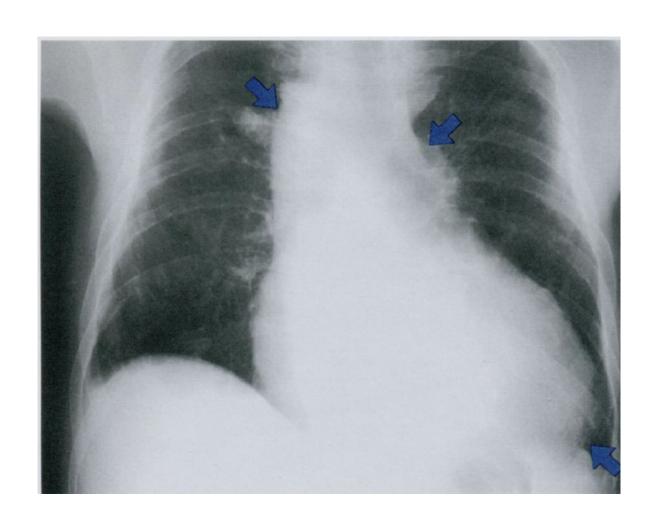
Clubbed fingers

Тетрада Фалло

• Физикальные данные.

- 1. Клинические проявления зависят от степени обструкции выходного тракта правого желудочка. Чем меньше легочный кровоток, тем в большей степени выражена гипоксия. Наиболее типично насыщение крови кислородом около 70-75%. Видимый цианоз зависит от двух факторов: степени гипоксии и содержания гемоглобина. Чем выше гемоглобин, тем раньше заметен цианоз.
- 2. Интенсивный систолический шум выслушивается по левому краю грудины. Чем более выражена обструкция выходного тракта правого желудочка, тем короче и слабее шум. Второй тон может быть нерасщепленным (так как отсутствует легочный компонент) и акцентированным (из-за увеличения размеров и декстрапозиции аорты).
- У больных с атрезией легочной артерии может быть слышен постоянный систоло-диастолический шум ОАП или больших аорто-легочных коллатеральных сосудов. Длительно существующий цианоз приводит к характерным изменениям ногтевых фаланг пальцев («барабанных палочек»).

Аускультативная картина тетрады Фалло Определяется:

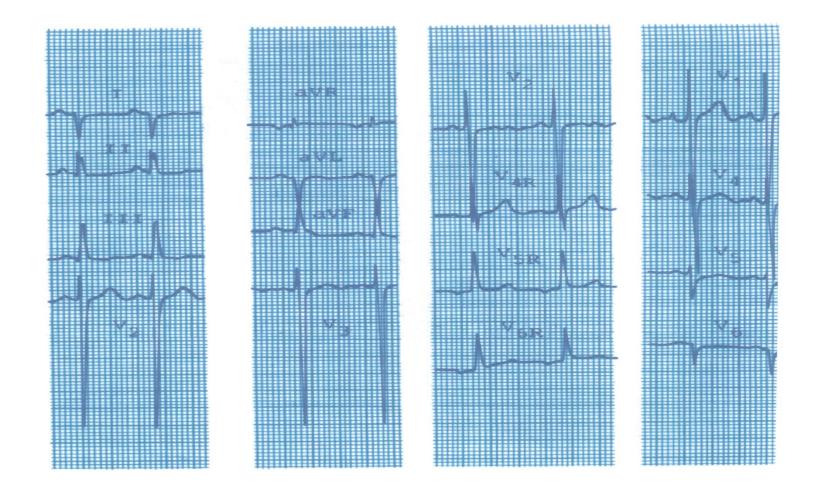

- -громкий первый тон,
- -грубый систолический шум изгнания с максимумом в третьем и четвертом межреберьях слева (при инфундибулярном стенозе) или во втором межреберье (при сочетании с клапанным).

При выраженности коллатерального кровообращения на спине над легочными полями может выслушиваться систолический или систолодиастолический шум.

Диагностика тетрады Фалло

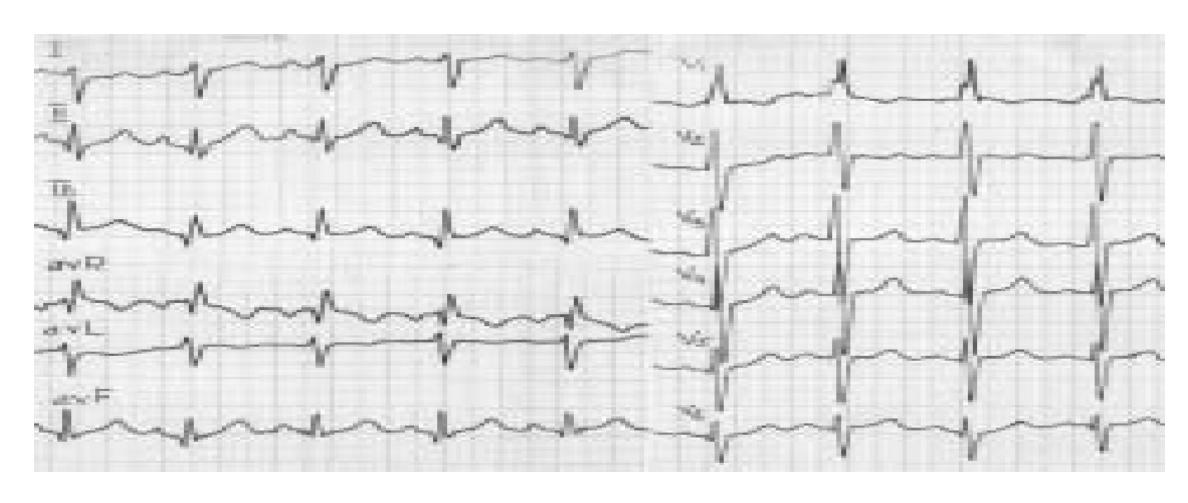
- ■R- грамма: Повышенная прозрачность легочных полей, легочный рисунок обеднен, корни легких узкие. Сердечная тень в передней прямой проекции имеет конфигурацию в виде голландского «деревянного» башмачка.
- Верхушка сердца закруглена и приподнята над диафрагмой. Талия сердца резко выражена.
 Сосудистый пучок расширен за счет смещения и расширения восходящей аорты.

Тетрада Фалло



Диагностика тетрады Фалло

■ЭКГ: Отклонение ЭОС вправо.


Признаки гипертрофии ПЖ и гипоксии миокарда. Нарушение внутрижелудочковой проводимости. Частичная блокада правой ножки пучка Гиса (ПНПГ) и другие нарушения А-В проводимости.

•**ЭХО-КГ:** Позволяет определить величину смещения аорты, степень легочного стеноза и гипертрофию правого желудочка. Двухмерная эхокардиография и доплеровское исследование могут быть достаточными для постановки диагноза и определения плана лечения.

Электрокардиограмма больного с правосформированным праворасположенным сердцем и тетрадой Фалло.
Электрическая ось сердца отклонена вправо; признаки гипертрофии правых отделов сердца.

Тетрада Фалло: отклонение электрической оси сердца вправо, признаки гипертрофии правого желудочка

Тетрада Фалло

- Прогноз. Дети с ТФ постепенно становятся более цианотичными.
- Задержка развития наблюдается в случаях выраженного цианоза. Возможно развитие тромбоэмболических осложнений и абсцессов головного мозга. Септический эндокардит является одним из возможных осложнений.

• Гипоксические приступы

- Гипоксические приступы могут развиваться у детей раннего возраста (чаще в возрасте 2-4 месяцев) и могут приводить к неврологическим повреждениям (судороги, потеря сознания) и смерти.
- Гипоксические приступы при ТФ характеризуются пароксизмом одышки, беспокойством и затяжным плачем, усилением цианоза и снижением интенсивности систолического шума.
- Обычно, приступы случаются после периода плача, кормления или дефекации.
- Нет связи со степенью цианоза в покое и вероятность возникновения приступов.

Тетрада Фалло

- Лечение приступов состоит в прерывании порочного круга неэффективной одышки и гипоксии.
- 1. Ребенка следует привести в положение с согнутыми конечностями
- 2. Морфин в дозе 0,2 мг/кг назначается подкожно или внутримышечно для подавления возбуждения дыхательного центра
- 3. Кислород обычно назначается, хотя не оказывает значительных изменений в насыщении крови кислородом
- 4. Ацидоз корригируется введением соды бикарбоната в дозе 1 мЭкв/кг внутривенно. Доза может быть повторена через каждые 10-15 минут. Сода снижает стимулирующее влияние ацидоза на дыхательный центр
- Если все эти меры не помогают, то следующими шагами должны быть:
- 5. Вазоконстрикторы, такие как фенилэфрин (мезатон) назначаются внутривенно в дозе 0,02 мг/кг.
- 6. Кетамин, от 1 до 3 мг/кг назначается внутривенно в течение 60 секунд, повышает системное сосудистое сопротивление и седатирует ребенка
- 7. Обзидан (пропранолол), 0,01-0,25 мг/кг назначается внутривенно медленно, снижает частоту ритма, может прервать приступ.
- 8. Интубация и перевод на искусственную вентиляцию легких.
- Для профилактики приступов может применяться пероральное введение пропанолола (обзидана) в дозе 2-6 мг.

Лечение тетрады Фалло

- Консервативное лечение:
- При одышечно-цианотическом приступе необходимо чтобы ребенок прижал колени к груди (уменьшается венозный возврат).
- Применяется р-р промедола 1% по 0,1\год жизни п\к, кордиамин 0,2\кг п\к. При спазме легочной артерииобзидан 0,1-0,05 мг\кг в\в капельно, внутрь.
- Радикальная хирургическая коррекция
- Паллиативные операции:
- системно-легочные или межартериальные анастомозы Блелока – Тауссиг (подключично-легочный анастомоз),
- анастомозы Ватерстоуна Кули (внутриперикардиальный анастомоз между восходящей аортой и правой легочной артерией).

Полная транспозиция аорты и легочной артерии (ТМС)

ТМС -синий ВПС, при котором аорта отходит от морфологически правого желудочка и несет оксигенированную кровь; легочная артерия - от морфологически левого желудочка.

Анатомические варианты ТМС:

- D –транспозиция (аорта находится справа и кпереди от легочной артерии).
- L –транспозиция (восходящая аорта находится слева и спереди от легочной артерии).
- О транспозиция (аорта лежит прямо впереди перед легочным стволом)

ТМС делится на 2 типа:

- 1. С переполненным легочным кровотоком
- 2. С обедненным легочным кровотоком.

Гемодинамика ТМС

- Основной особенностью гемодинамики является разобщенность кругов кровообращения, которые соединяются при помощи шунтов.
- Через шунт артериальная кровь из левого сердца попадает в аорту, а венозная из правого сердца – в легкие, поэтому сброс перекрестный.
- При наличии 2-х шунтов каждый из них может функционировать преимущественно в одном направлении.

Клиника ТМС

Основные симптомы появляются с первых дней жизни: цианоз (разной степени выраженности), одышка, тахикардия.

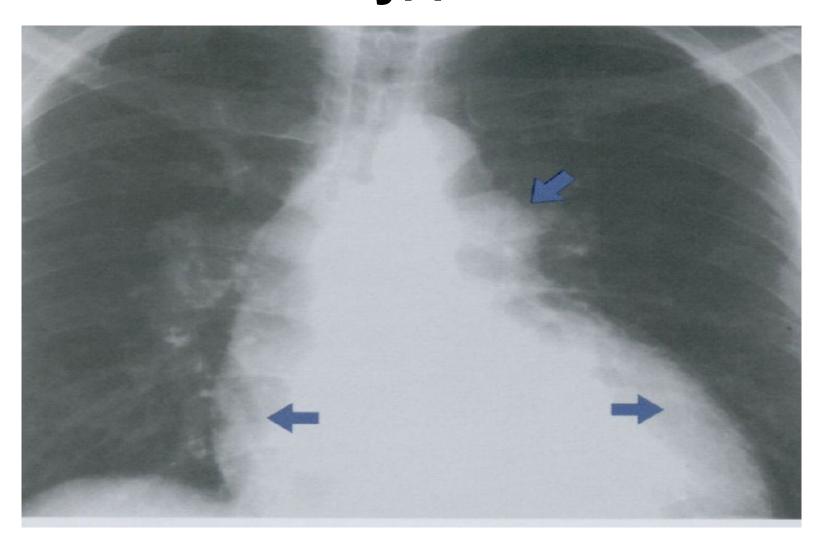
На 3-4 неделе жизни появляются: периферические отеки, увеличение печени, застойные хрипы в легких, гипотрофия, отставание в психомоторном развитии, частые ОРВИ, пневмонии.

Клиника ТМС

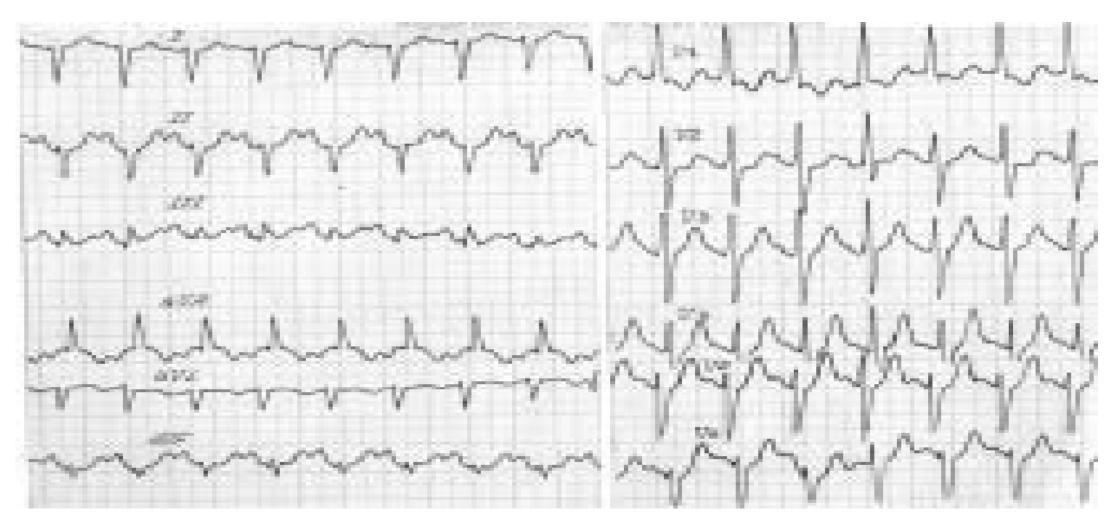
Аускультативная картина:

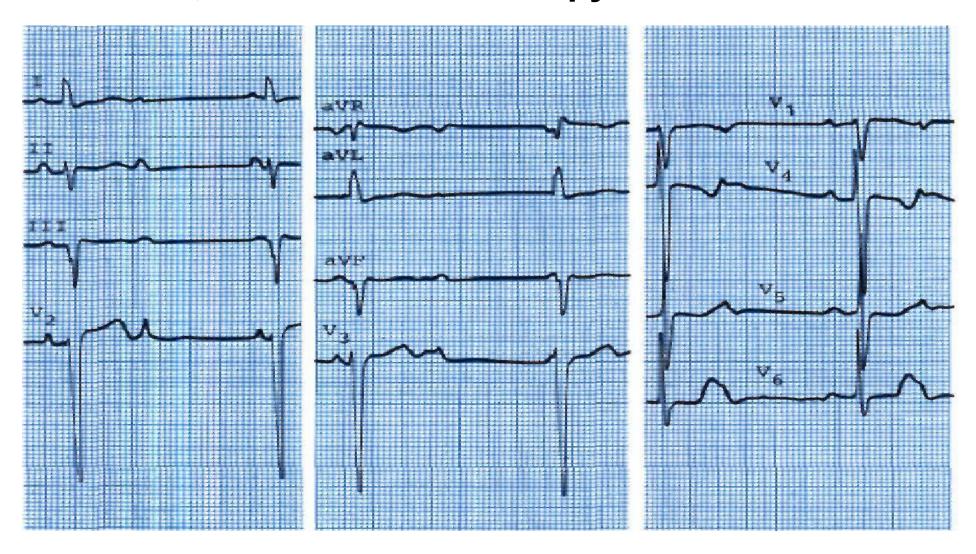
- **при ТМС с переполненным легочным кровотоком** - вдоль левого края грудины выслушивается негромкий систолический шум, но у 20- 25% детей шум отсутствует;

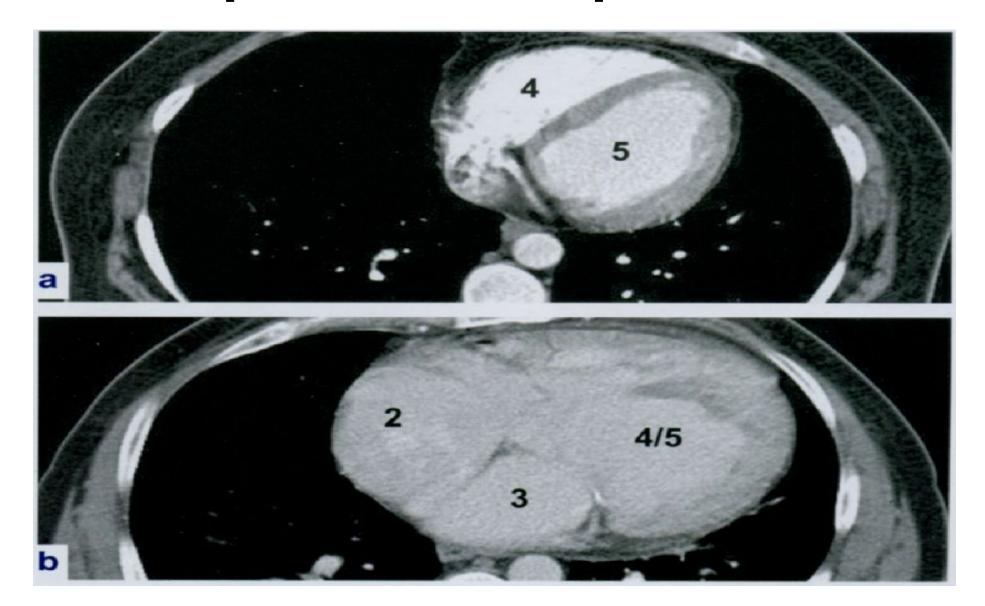
- **при ТМС с обедненным легочным кровотоком** выслушивается грубый систолический шум во 2 3 межреберье слева от грудины,
- -так как появление шума обусловлено наличием компенсирующих коммуникаций, то его характер может быть весьма различным.

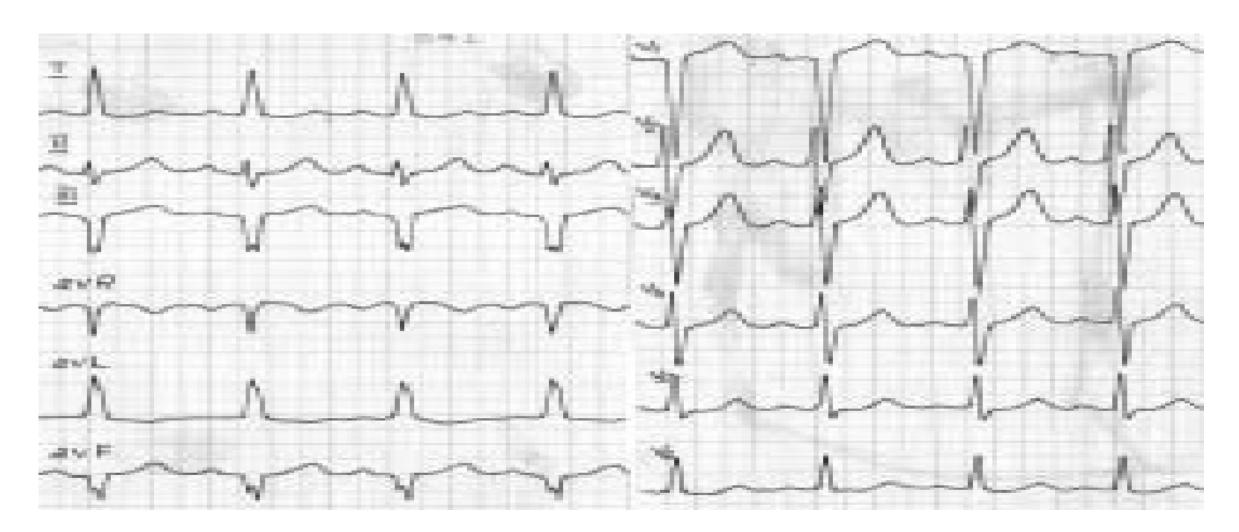

Диагностика ТМС

- •R- грамма: сердце имеет овальную форму в виде «яйца, лежащего на боку», с узким сосудистым пучком в передне-задней проекции и расширено в боковой.
- •**ЭКГ:** отклонение ЭОС вправо; признаки гипертрофии миокарда ПЖ, реже гипертрофии миокарда обоих желудочков и перегрузка предсердий.
- •**ЭХО-КГ:** позволяет определить анатомическое положение сосудов, соответствие желудочков отходящим от них сосудов и выявить


Іранспозиция магистральных

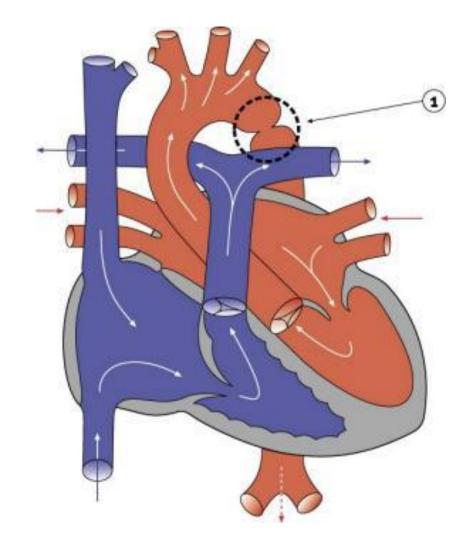

Транспозиция магистральных сосудов


ТМС: электрическая ось сердца отклонена вправо, признаки гипертрофии (overload), правого желудочка, overload предсердий


ЭКГ пациента с коррегированным ТМС и умеренной недостаточностью атриовентрикулярного клапана. Полный поперечный блок, Q-волна в левых грудных отведениях

СТ: а -нормальное сердце, b - с ТМС

Коррегированный ТМС: отклонение электрической оси сердца влево (угол α QRS 16°), Q-волна в V5, V6 не определяются, QS закруглен в отведениях III, aVF, V1.



Лечение ТМС

- **Консервативное лечение**: на первом этапе проводится постоянная инфузия простагландина E1;
- коррекция метаболического ацидоза бикарбонатом натрия;
- при отеке легкого и тяжелой гипоксемии больной переводится на ИВЛ.
- Хирургическое лечение: радикальная анатомическая коррекция порока артериальное переключение; при сопутствующей патологии коронарных артерий предсердное переключение (операция по Сеннингу или процедура Мастарда).

Коарктация аорты.

Коарктация аорты представляет собой врожденное сужение или полный перерыв аорты в области перешейка ее дуги, иногда в грудной или брюшной части.

Анатомические варианты коарктации аорты (КоА)

- 1. Изолированная коарктация
- Коарктация в сочетании с ОАП: постдуктальная
 (расположена ниже отхождения ОАП), юкстадуктальная
 (проток открывается на уровне сужения), предуктальная
 (артериальный проток отходит ниже коарктации).
- 3. Коарктация в сочетании с другими ВПС (ДМЖП, ДМПП, стеноз аорты, аневризма синуса Вальсальвы, транспозиция магистральных сосудов).
- 4. **Атипичная локализация** коарктация в области грудной или брюшной аорты.

Гемодинамика КоА

Имеется систолическая перегрузка левого желудочка и существует 2 гемодинамических режима:

- 1. Гипертонический (выше места коарктации верхняя половина туловища)
- **2. Гипотонический** (ниже сужения брюшная полость, нижние конечности)

При постдуктальной коарктации кровь из аорты под высоким давлением сбрасывается через ОАП в легочную артерию, при этом может рано развиться гипертензия.

При предуктальном варианте направление сброса через артериальный проток будет определяться разницей давлений между легочной артерией и нисходящей аортой ниже места коарктации; сброс может быть артериовенозным и веноартериальным.

Клиника КоА

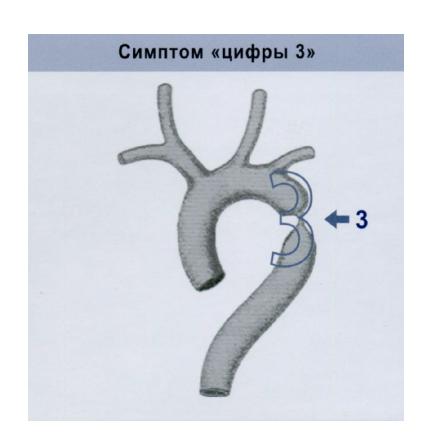
У детей раннего возраста:

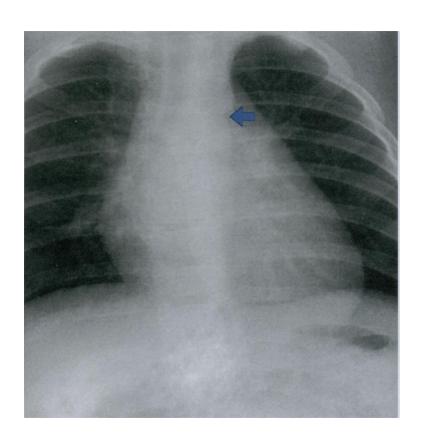
- 1. Повторные пневмонии,
- 2. Явления легочно-сердечной недостаточности:
- отмечаются резкая бледность кожных покровов,
- выраженная одышка,
- застойные хрипы в легких, имитирующие пневмонию.
- 3. Дети отстают в физическом развитии, имеется гипотрофия I-III степени.
- 4. АД на руках у детей достигает высоких цифр до 190-200/90-100 мм рт. ст., при сочетаниями с другими ВПС АД 130-170/80-90 мм рт. ст.
- 5. На ногах давление не определяется или резко снижено.

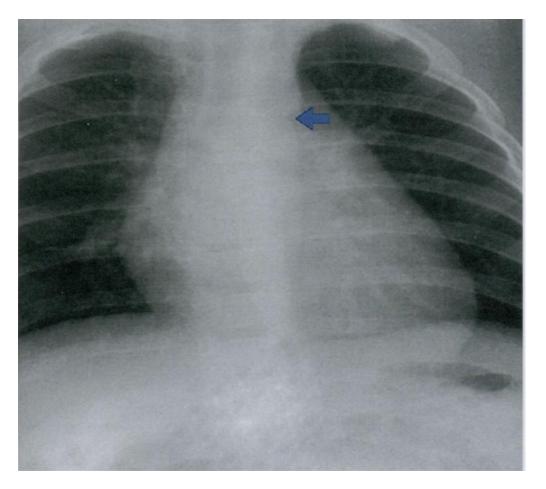
Клиника КоА

У детей старшего возраста (при отсутствии жалоб повышенное АД обнаруживают случайно):

- головокружения,
- тяжесть и боль в голове,
- повышенную утомляемость,
- носовые кровотечения,
- боли в сердце.

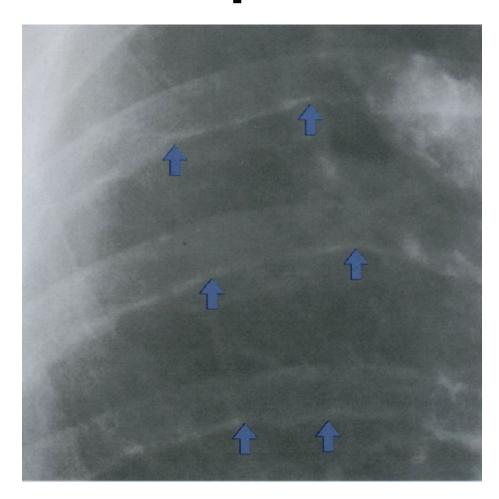

Аускультативная картина КоА

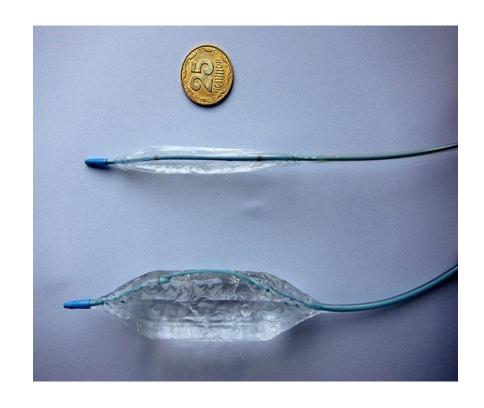

- Систолический шум грубого тембра шума изгнания различной продолжительности преимущественно на основании сердца или сзади в межлопаточной области слева (место проекции перешейка аорты).
- ■Кроме систолического шума при аускультации можно заподозрить двустворчатый аортальный клапан (негрубый систолический шум во втором межреберье справа) или его недостаточность (протодиастолический шум во втором и третьем межреберьях слева у грудины), недостаточность митрального клапана (систолический шум на верхушке с иррадиацией в левую аксиллярную область).


Диагностика КоА

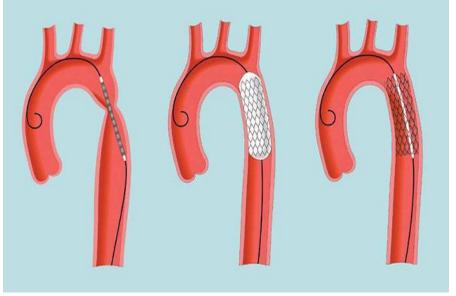
- R- грамма: Легочный рисунок не изменен.
- По нижнему краю задних отрезков 6-7 ребер определяются краевые «узуры». Талия сердца выражена. Аорта расширена в восходящем отделе, «пуговка» аорта западает. Левый желудочек гипертрофирован.
- **ЭКГ**: Нормальное положение ЭОС. Нарушение процессов реполяризации в желудочках (отрицательный зубец Т в отведении V4).
- ЭХО-КГ: При 2-х мерном исследовании можно увидеть место и степень сужения аорты, оценить сократительную способность левого желудочка, определить сопутствующие врожденные пороки.

Симптом «цифры 3" (престенотическое и постстенотическое расширение нисходящей аорты в зоне коарктации аорты)




Симптом «цифры 3» (престенотическое и постстенотическое расширение нисходящего отдела аорты в области коарктации Ао)

"Узурация" ребер при коарктации аорты



Лечение КоА

- Консервативное лечение: При раннем дебюте лечение застойной сердечной недостаточности (диуретики, инотропные средства).
- При позднем дебюте лечение артериальной гипертензии эффективно корригируется назначением β-адреноблокаторов.
- **Хирургическое лечение:** У новорожденных и детей раннего возраста применяется операция аортопластики с пластикой левой подключичной артерии.
- У больных старше 5 6 лет наибольшее распространение имеет методика резекции коарктации аорты с наложением анастомоза конец в конец.
- В последнее время стала применяться баллонная дилатация сужения и транскатетерные методы.

Баллон

Схема стентирования аорты

Тактика ведения детей с ВПС

• Лечение ХСН:

- сердечные гликозиды (строфантин, коргликон 0,1 мл/год жизни, не более 1 мл в сутки, дигоксин доза насыщения 0,03-0,04 мг/кг на три введения, затем переход на поддерживающую дозу 0,01 мг/кг ,сутки на два приема)
- мочегонные (лазикс, фуросемид 1-3 мг/кг, верошпирон 2-4 мг/кг)
- ингибиторы АПФ (каптоприл 1-2 мг/кг?сутки на два- три приема)
- β-блокаторы пропранолол 0,1-0,2мг/кг/сут.
- ЭКМО экстракорпоральная мембранная оксигенация крови
- Коррекция нарушений ритма сердца.

Тактика ведения детей с ВПС

- Коррекция осложнений со стороны органов дыхания (бронхиты, пневмонии)-
 - антибактериальная терапия: защищенные пенициллины (амоксиклав, аугментин); цефалоспорины II-III поколения (кефзол, фортум, цефосин, супракс), макролиды (азитромицин, кларитромицин);
 - муколитические и отхаркивающие препараты (лазолван, бромгексин, амброксол, геделикс, эреспал),
 - посиндромная терапия (жаропонижающая, дезинтоксикационная и др.).
- **Коррекция иммунной недостаточности** (иммуноглобулины –в/м, в/в-иммуновенин, пентаглобин; интерфероны-виферон, кипферон; адаптогены).
- Коррекция фоновых состояний (рахита, анемии, гипоксически-ишемических поражений ЦНС, дисбиоза кишечника).
- Оперативное лечение ВПС.

•Благодарю за внимание!