

Урок «Решение задач по темам Радиоактивные превращения, ядерные реакции, энергия связи»

Формулы, используемые на уроках «Задачи на Состав атома, ядерные реакции и энергия связи атомного ядра».

Название величины	Обозначение	Единица измерения	Формула
Масса протона	m _p	а.е.м	m _p = 1,00728
Масса нейтрона	m _n	а.е.м	m _n = 1,00867
Число протонов	Z		
Число нейтронов	N		
Масса ядра	M _я	а.е.м	
Дефект масс	Δm	а.е.м, кг	$\Delta m = (Zm_p + Nm_n)$ $- M_g$
Энергия связи ядра	ΔE ₀	Дж	$\Delta E_0 = \Delta mc^2$
Скорость света	C	м/с	c = 3•10 ⁸

М

Краткая теория для решения Задачи на Состав атома и ядерные реакции.

Алгоритм решения задачи на расчет энергии связи атомного ядра:

- 1. Определить количество протонов и нейтронов в ядре атома.
- 2. Вычислить дефект масс в атомных единицах массы.
- 3. Перевести атомные единицы массы в килограммы: 1 а.е.м. = $1,6605 \cdot 10^{-27}$ кг.
- 4. Вычислить энергию связи; ответ записать в стандартном виде.

Важные замечания:

- 1. Вычисления сложные, поэтому лучше их производить с помощью микрокалькулятора.
- 2. В ходе вычисления дефекта масс нельзя ничего округлять, иначе дефект масс обратится в ноль. Округлить можно только результат.

Ответьте на вопросы

1.Определите число электронов, протонов и нейтронов в атоме кислорода ₉₂²³⁵U

2. β-излучение - это

1) поток нейтральных частиц

2) поток полностью ионизированных атомов

гелия

3) поток электронов

4) до настоящего момента их заряд не известен

3.Порядковый номер элемента в таблице химических элементов Менделеева равен

1) массовому числу атома 2) зарядовому числу атома

3) ничего не указывает 4) числу электронов

4. При а-распаде массовое число ядра

1) увеличивается на 2 единицы

2) увеличивается на 2 единицы

3) уменьшается на 2 единицы

4) уменьшается на 4 единицы

5.Порядковый номер элемента в таблице химических элементов Менделеева равен

1) массовому числу атома

2) зарядовому числу атома

3) ничего не указывает

4) числу электронов

2

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

1. В результате α -распаdа ядро радона $_{86}$ Rn 222 ядро превратилось в----- Напишите реакцию и определите элемент.

$$_{86}$$
Rn²²² \rightarrow X+ $_{2}$ He 86-2=84 222-4=218

2. Что произойдет с изотопом урана-237 при β - распаде?

$$_{92}^{237}U \rightarrow X + _{-1}^{0}e$$
 92+1=93, 237+0=237 $X = _{93}^{137}Np$

- $\overline{3}$. Ядро изотопа урана $^{238}_{92}$ U после нескольких радиоактивных распадов превратилось в ядро изотопа $^{234}_{92}$ U. Какие это были распады?
- 4. Во что превращается уран-238 после α-распада и двух β-распадов?
- 5. Написать недостающие обозначения в следующих ядерных реакциях:

$${}_{3}\text{Li} + {}_{0}^{1}\text{n} \rightarrow {}_{2}^{4}\text{He} + ?$$

$${}_{1}\text{H} + \gamma ? \rightarrow + {}_{0}^{1}\text{n}$$

В какое ядро превращается сурьма $^{123}_{51}$ Sb после четырех β -распадов?

Решение. При β-распаде в исходном ядре один нейтрон превращается в протон, поэтому зарядовое число уменьшается на единицу, а массовое — остается неизменным, так как общее число нуклонов в ядре не изменяется. Из правила смещения для β-распада следует, что:

$${}^{\mathrm{M}}_{\mathrm{Z}}\mathrm{X} \to {}^{\mathrm{M}}_{Z+1}\mathrm{Y} + {}^{\mathrm{0}}_{-1}e$$
 или ${}^{123}_{51}\mathrm{Sb} \to {}^{123}_{55}\mathrm{Cs} + 4 {}^{\mathrm{0}}_{-1}e$.

6. Каким образом можно осуществить давнюю мечту алхимиков средневековья — превратить ртуть в золото?

Решение. Путем осуществления, например, следующей ядерной реакции: ${}^{198}_{80}$ Hg + ${}^{1}_{0}$ n $\rightarrow {}^{199}_{80}$ Hg $\rightarrow {}^{198}_{79}$ Au + ${}^{1}_{1}$ H.

В природе существует один стабильный изотоп золота ($^{197}_{79}$ Au) и семь изотопов ртути ($^{196}_{80}$ Hg, $^{198}_{80}$ Hg, $^{199}_{80}$ Hg, $^{200}_{80}$ Hg, $^{201}_{80}$ Hg, $^{202}_{80}$ Hg, $^{204}_{80}$ Hg). Значит, в ходе ядерной реакции необходимо «всего лишь» уменьшить число протонов на единицу и, возможно, изменить число нейтронов.

Однако, вследствие редкого попадания нейтронов в ядра ртути количество полученного золота ничтожно мало. Так как затрата энергии при этом огромна, то процесс экономически невыгоден.

7. Определите дефект масс и энергию связи ядра атома $^{235}_{99}$ U .

Решение. Дефект масс ядра определяется по формуле $\Delta m = \left(Zm_{\rm p} + Nm_{\rm n}\right) - M_{\rm g}$. В таблицах масс изотопов приводятся значение масс нейтральных атомов, а не массы ядер. Поэтому эту формулу *целесообразно* преобразовать так, чтобы вместо массы данного ядра $M_{\rm g}$ в нее входила масса соответствующего нейтрального атома $M_{\rm g}$. Так как

$$M_{_{\mathrm{H}}}=M_{_{\mathrm{a}}}-Zm_{_{\mathrm{e}}}$$
, то $\Delta m=Zm_{_{\mathrm{p}}}+Nm_{_{\mathrm{n}}}-\left(M_{_{\mathrm{a}}}-Zm_{_{\mathrm{e}}}\right)$ или

 $\Delta m = Z \left(m_{\rm p} + m_{\rm e}\right) + N m_{\rm n} - M_{\rm a}$. Но $m_{\rm p} + m_{\rm e} = m_{\rm lh}$. Следовательно, окончательно получаем $\Delta m = (Z m_{\rm lh} + N m_{\rm n}) - M_{\rm a}$. Из таблиц берем следующие данные: $m_{\rm lh} = 1,00783$ а.е.м, $m_{\rm n} = 1,00866$ а.е.м., $M_{\rm a} = 235,04392$. Подставляя в последнюю формулу числовые

значения масс в а.е.м., получаем $\Delta m = 92 \cdot 1,00783 + 143 \times 1,00866 - 235,04392 = 1,915$ (а.е.м.). Если мы хотим получить энергию связи в джоулях, то дефект масс нужно выразить в килограммах.

Поскольку 1 а.е.м. = 1,66 \cdot 10⁻²⁷ кг, получаем $\Delta m = 1,66 \cdot 10^{-27} \times 1,915 = 3,18 \cdot 10^{-27}$ (кг). Подставляя это значение дефекта масс в формулу $\Delta E_0 = \Delta mc^2$, получаем:

$$\Delta E_0 = 3.18 \cdot 10^{-27} \cdot (3 \cdot 10^8)^2 = 28.6 \cdot 10^{-11} \ (\text{Дж}).$$

8. Допишите ядерные реакции:

$$^{9}_{4}Be + ^{1}_{1}H \rightarrow ^{10}_{5}B + ?$$

$$\Box ^{14}_{7}N + ? \rightarrow ^{14}_{6}C + ^{1}_{1}p$$

$$^{-14}_{7}N + ^{4}_{2}He \rightarrow ? + ^{1}_{1}H$$

 $^{27}_{13}$ AI + 4_2 He \rightarrow $^{30}_{15}$ P + ? (1934 г. Ирен Кюри и Фредерик Жолио-Кюри получили радиоактивный изотоп фосфора)

$$\square$$
 ? + ${}^{4}_{2}$ He $\rightarrow {}^{30}_{14}$ Si + ${}^{1}_{1}$ p

Выделяется или поглощается энергия при следующей ядерной реакции: ${}^{14}_{7}N + {}^{4}_{9}He \rightarrow {}^{17}_{8}O + {}^{1}_{1}H$

На примере данной задачи можно определить:выделяется или поглощается энергия при реакциях.

Решение. Найдем разность Δm суммарной массы ядер и частиц до реакции и после реакции. Энерговыделение при ядерной реакции равно: $\Delta E = \left(m_{\rm N} + m_{\rm He} - m_{\rm O} - m_{\rm H}\right)c^2$. Если $\Delta E > 0$, реакция идет с выделением энергии. Если $\Delta E < 0$, реакция идет с поглощением энергии. Проверка единиц измерения:

$$[\Delta E] = \text{a.e.м.} \cdot \frac{\kappa \Gamma}{\text{a.e.м.}} \cdot \left(\frac{M}{c}\right)^2 = \text{Дж.}$$

Вычисления: $\Delta E = (14,00307 + 4,00260 - 16,99913 - 1,00783) \times 1,661 \cdot 10^{-27} \cdot (3 \cdot 10^8)^2 = -1,93 \cdot 10^{-13}$ (Дж).

Так как $\Delta E < 0$, то энергия поглощается.

Выполните самостоятельно

Вычислите энергию связи ядра лития $^{16}_{8}$ O . Масса ядра равна 15,9994 а.е.м.

Какая из данных реакций не произойдет? Почему?

a)
$${}_{6}^{11}C \rightarrow {}_{7}^{10}N + {}_{-1}^{0}e$$

6)
$${}_{3}^{6}\text{Li} + {}_{1}^{1}p \rightarrow {}_{2}^{4}\text{He} + {}_{2}^{3}\text{He}$$

B)
$${}_{4}^{9}$$
Be + ${}_{1}^{2}$ H $\rightarrow {}_{5}^{10}$ B + ${}_{0}^{1}$ n

r)
$${}_{3}^{7}\text{Li} + {}_{1}^{1}\text{H} \rightarrow {}_{2}^{4}\text{He} + {}_{2}^{4}\text{He}$$