

Nanofibers of aluminum oxide

Nafen is produced from melt: industrial-scale technology

1

TEM micrographs / SAXS data

(SAXS); also indicate high degree of alignment

Nafen nanofibers: summary of properties

Parameter	value
Phase	gamma / chi ~ 15:85 *
Mean fiber diameter, nm	7-10
Fiber length, mm	1–150
Specific surface area (BET), m ² /g	100-150
Purity, %	99.7
Bulk density, g/cm ³	0.1 to 0.4

 $^{^{\}star}$ - phase composition can not be accurately quantified because of lack of structure model for χ -phase

Is it unique?

Reference 1: AlOOH "aerogel" (FEI)

Reference 2: Nano Technology Inc. (Korea):

"diameter is approximately 5-10 nm, and the aspect ratio is in the 50 to 200 range"

3258 Bull. Korean Chem. Soc. **2012**, Vol. 33, No. 10 http://dx.doi.org/10.5012/bkcs.2012.33.10.3258

Byung-Joo Kim et al.

Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites

Byung-Joo Kim, Kyong-Min Bae, * Kay-Hyeok An, * and Soo-Jin Park *, *

Mechanical properties of individual fiber

Calculation of Elastic modulus, fracture strength, and fracture energy of Nafen fibers

$$E = \frac{FL^3}{192d_n I} = \frac{K_n L^3}{192I}$$

where I is the moment of inertia, L is the suspended length of the sample, and F is the applied load at its midpoint position. K_n , the spring constant of the sample.

Calculation of fracture strength

$$\sigma = \frac{FL}{2\pi r^3}$$

Where F is load when the nanowire cracks, L is the suspended length of the sample; r is the radius of nanowire.

CNTs (Wiki):

Young's modulus on the order of 270 - 950 GPa and tensile strength of 11 - 63 GPa

Phase analysis (XRD)

2.77

30

40

2Theta, degrees

4.54

20

1.51

60

70

422

1.61

331

1.81

50

Typical diffraction patterns for low-temperature phases of alumina

- chi is identified by the peak at $2\theta=42.8$

Diffraction patterns of two samples of Nafen

- the phase is identified as mostly chi, with some gamma
- crystallite (CSR) size 50-100 nm

Nafen fibers are polycrystalline alumina in gamma and chi phases

High-temperature phase transformation (XRD)

The surface is 'saw-shaped' (TEM)

Main application: reinforcing filler for thermoset-based adhesives

EP-PP copolymers:

"as co-monomer"

accepted for publication

Technological challenges & solutions

Ultrasonic dispersion and/or targeted surface treatment (functionalization) allows good (almost to single fiber) level of dispersion

Surface chemistry

¹H MAS NMR:

three types of surface protons:

- terminal
 - bridge
- hydrogen-bonded

IR spectroscopy / CO absorption:

only weak and medium-strength Brønsted and Lewis centers are present:

max Q(LC) = 39 kJ/mole - considerably lower than for "conventional" Al_2O_3 types

Nafen as support for heterogeneous catalysts: first trials

1) HDC of halogen-aromatic compounds: application for waste treatment (unpublished)

2) Emulsion hydrogenation of substituted phenols (unpublished data):

Nafen as support for heterogeneous catalysts: potential / advantages

- 1) low-T Al₂O₃ polymorph
- 2) relatively high SSA and "highly-defective" surface: allows easy anchoring of catalytically active components
- 3) low acidity: no / minimal side reactions → selectivity
- 4) surface chemistry can be tailored:
 - three subtypes of Nafen available
 - functionalization is possible
- 5) ready masterbatches for liquid dispersion type processes can be produced
- 6) "bonus" reinforcement effect (?)

Thank You for Attention