Lecture 6.

Techniques of Integration
(part 1)



BECAUSE OF THE FUNDAMENTAL THEOREM of Calculus, we can integrate a function if we know
an antiderivative, that is, an indefinite integral. We summarize here the most important integrals

that we have learned so far.
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In this chapter we develop techniques for using these basic integration formulas to obtain indefi-
nite integrals of more complicated functions. We learned the most important method of integration,

the Substitution Rule, in Section 5.5. The other general technique, integration by parts,
is presented in Section 7.1. Then we learn methods that are special to particular classes
of functions, such as trigonometric functions and rational functions.

Integration is not as straightforward as differentiation; there are no rules that abso-
lutely guarantee obtaining an indefinite integral of a function. Therefore we discuss a
strategy for integration in Section 7.5.



7.1 | Integration by Parts

Every differentiation rule has a corresponding integration rule. For instance, the Substi-
tution Rule for integration corresponds to the Chain Rule for differentiation. The integra-
tion rule that corresponds to the Product Rule for differentiation i1s called integration
by parts.

B Integration by Parts: Indefinite Integrals
The Product Rule states that if f and g are differentiable functions, then

d
—- g1 = f(x)g'(x) + g()f' ()
In the notation for indefinite integrals this equation becomes

[ @@ + 9@ f @1 dx = )9
or f f(x)g'(x)dx + f g(x)f'(x) dx = f(x)g(x)

We can rearrange this equation as

1] [ f®g'(x) dx = f(Dg(x) — [ ) f'(x) dx

Formula 1 is called the formula for integration by parts. It is perhaps easier to remem-
ber in the following notation. Let # = f(x) and v = g(x). Then the differentials are
du = f'(x) dx and dv = g'(x) dx, so, by the Substitution Rule, the formula for integra-
tion by parts becomes

(2] '..udv=uv—jvdu




EXAMPLE 1 Find j x sin x dx.

SOLUTION USING FORMULA 1 Suppose we choose f(x) = x and g'(x) = sin x. Then
f'(x) = 1 and g(x) = —cos x. (For g we can choose any antiderivative of g'.) Thus,

using Formula 1, we have
[ xsin xdx = f(x)g(x) — [ glx)f(x) dx

= x(—cos x) —I(—cosx)dx= —xcosx+jcosxdx

Itis helpful to use the pattern:
u=0 dv =10

du =[] v=0

It’s wise to check the answer by differentiating it. If we do so, we get x sin x, as

expected.
SOLUTION USING FORMULA 2 Let

U=x dv = sin xdx

= —xcosx+smx+ C

du = dx v = —COSX

udv u v v du
~ e r—— *F—"-\

xsinxdx = | x smxdx = x (—cosx) — | (—cos x) dx
J J J

= —xcosx + Ioosxdx

= —xcosx+smnx+ C




NOTE Owur aim in using integration by parts is to obtain a simpler integral than the one
we started with. Thus in Example 1 we started with f x sin x dx and expressed it in terms
of the simpler integral | cos x dx. If we had instead chosen 4 = sin x and dv = x dx, then

du = cos x dx and v = x?/2, so integration by parts gives

2
X
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J. x sin x dx = (sin x) - ?j. x“cos xdx

Although this is true, | x’cos x dx is a more difficult integral than the one we started
with. In general, when deciding on a choice for ¥ and dv, we usually try to choose
u = f(x) to be a function that becomes simpler when differentiated (or at least not more
complicated) as long as dv = g’'(x) dx can be readily integrated to give v.

EXAMPLE 2 Evaluate f In xdx.

SOLUTION Here we don’t have much choice for « and dv. Let

u=Inx dv = dx
Then du = —dx v=2Xx
%
Integrating by parts, we get

Iln.rd.x’:xlnx-‘[x-%dx

It's customary towrite | 1 dx as | dx.
=xlnx — J dx

Check the answer by differentiating it.
=xIhx—x+C

Integration by parts is effective in this example because the derivative of the
function f(x) = In x is simpler than f.



EXAMPLE 3 Find j 126 dt.

SOLUTION Notice that e’ is unchanged when differentiated or integrated whereas t*
becomes simpler when differentiated, so we choose

=1 dv = e'dt

Then du = 2tdt v=-e¢'
Integration by parts gives
[3] J‘tze‘dt=t2e'—2jte‘dt

'Iheintegmltbatweobtained,j’te‘dt, is simpler than the original integral but is still not
obvious. Therefore we use integration by parts a second time, this time with 4 = f and
dv = e¢'dt. Thendu = dt, v = €', and

Ite‘dt= te' — Ie‘dt

=t —¢e+C
Putting this in Equation 3, we get

Itze'dt = 2’ — 2] te' dt
= tle' — 2te' — ' + C)

= t2e' — 2te' + 2¢' + C,




An easier method, using complex EXAMPLE 4 Evaluate J‘ SRS
numbers, is given in Exercise 50 in

Rppendosts SOLUTION Neither ¢* nor sin x becomes simpler when differentiated, so let’s try

choosing u = e* and dv = sin x dx. (It turns out that, in this example, choosing
u = sin x, dv = e" dx also works.) Then du = e*dx and v = —cos x, so integration
by parts gives

(4] fe‘sin xdx = —e*cos x + Ie"cos xdx

The integral that we have obtained, j e*cos x dx, 1s no simpler than the original one, but
at least it’s no more difficult. Having had success in the preceding example integrating
by parts twice, we persevere and integrate by parts again. It is important that we again
choose u = e*, so dv = cos xdx. Then du = e*dx, v = sin x, and

Figure Tillustrates Example 4 by show-

ing the graphs of f(x) = e*sin xand [5] J. e*cos x dx = e*sin x — I e*sin x dx

F(x) = %e‘(sin X — cos x). As avisual

check on our work, notice that

f(x) = Owhen K has a maximum or

minimum.

At first glance, it appears as if we have accomplished nothing because we have arrived
at f e*sin x dx, which is where we started. However, if we put the expression for
f e*cos x dx from Equation 5 into Equation 4 we get

je‘sin xdx = —efcosx + e*sinx — I e*sin xdx

This can be regarded as an equation to be solved for the unknown integral. Adding
j' e* sin x dx to both sides, we obtain

-3 — 2.’ e*sin xdx = —e*cosx + e*sinx

Dividing by 2 and adding the constant of integration, we get

FIGURE 1 J‘ e*sin xdx = 1e*(sinx — cos x) + C



Sincetan”'x = Ofor x = 0,theinte- Il Integration by Parts: Definite Integrals

gral in Example 5 can be interpreted
as the area of the region shown in
Figure 2.

y“

FIGURE 2

If we combine the formula for integration by parts with Part 2 of the Fundamental
Theorem of Calculus, we can evaluate definite integrals by parts. Evaluating both sides
of Formula 1 between a and b, assuming f' and g’ are continuous, and using the Funda-
mental Theorem, we obtain

6] [ 1099w dx = fg0)], — [ g0f (x)

EXAMPLE 5 Calculate Jol tan~'x dx.
SOLUTION Let

u=tan"'x dv = dx

Then

So Formula 6 gives

b oy B VX
.fotan xdx = xtan x]o J01+x2dx
=l~tan"l—0°tan“'0—jl x = dx
0o 1+ x°




To evaluate this integral we use the substitution t = 1 + x* (since u has another mean-
ingin-thisexample).Thmdt=2xdx,soxdx=%dt.Whenx=0,t= 1; whenx =1,
t=12;s0

=t T =tmpl]

=4(In2—In1)=7In2

I:"“-xd":%".clsz




B Reduction Formulas

The preceding examples show that integration by parts often allows us to express one

integral in terms of a simpler one. If the integrand contains a power of a function. we can
sometimes use integration by parts to reduce the power. In this way we can find a reduc-

tion formula as in the next example.

Equation 7 is called a reduction for-r EXAMPLE 6 Prove the reduction formula
mula because the exponent n has

1 n—1
been reduced ton —1and n — 2. J. sin"x dx = ——cos xsin""'x + —f sin" “x dx
n n
where n = 2 is an integer.
SOLUTION Let
=KX dv = sin xdx
Then du = (n — 1) sin" %x cos x dx v = —COS X
and integration by parts gives
f sin"xdx = —cos xsin" 'x + (n — I)J sin®" %x cos’x dx

Since cos’x = 1 — sin’x, we have
J sin"xdx = —cos xsin" 'x + (n — I)j sin"2xdx — (n — l)" sin"x dx

As in Example 4, we solve this equation for the desired integral by taking the last term
on the right side to the left side. Thus we have

. - — - Yy
nj sin"xdx = —cos xsin" 'x + (n — I)J sin" “xdx
= 1 inf-1 n—Ae -2
or sin"xdx = —cos xsin" " 'x + —— ’ sin" “x dx o
“ n n o

The reduction formula (7) is useful because by using it repeatedly we could eventu-
ally express j sin”"x dx in terms of ( sin x dx (if n 1s odd) or j (sin x)°dx = f dx (if n 1s
even).



7.2 | Trigonometric Integrals

In this section we use trigonometric identities to integrate certain combinations of trigo-
nometric functions.

B Integrals of Powers of Sine and Cosine

We begin by considering integrals in which the integrand is a power of sine, a power of
cosine, or a product of these.

EXAMPLE 1 Evaluate j cos’x dx.

SOLUTION Simply substituting # = cos x isn’t helpful, since then du = —sin xdx. In
order to integrate powers of cosine, we would need an extra sin x factor. Similarly, a
power of sine would require an extra cos x factor. Thus here we can separate one cosine
factor and convert the remaining cos“x factor to an expression involving sine using the
identity sin’x + cos’x = 1:

o 2 - . 2
cos'x = cos“x » cos x = (1 — sin“x) cos x

We can then evaluate the integral by substituting ¥ = sin x, so du = cos x dx and

jcos’x dx = ’ cos’x + cos xdx = ' (1 — sin’x) cos x dx

= ’ (1 —uz)du=u—§-u3+C
= sin x — ysin’x + C [

In general, we try to write an integrand involving powers of sine and cosine in a form
where we have only one sine factor (and the remainder of the expression in terms of
cosine) or only one cosine factor (and the remainder of the expression in terms of sine).
The identity sin’x + cos’x = 1 enables us to convert back and forth between even pow-
ers of sine and cosine.



EXAMPLE 2 Find j sin®x cos?x dx.

SOLUTION We could convert cos’x to 1 — sin’x, but we would be left with an
expression in terms of sin x with no extra cos x factor. Instead, we separate a single sine

factor and rewrite the remaining sin*x factor in terms of cos x:

.5 e BNE  F e LAY Y.
sin’x cos“x = (sin“x)” cos“x sin x = (1 — cos“x)” cos“x sin x

Substituting 4 = cos x, we have du = —sin x dx and so
Flgure1 shquS the gre?phs of the '{ sin’x cosx dx = | (sin2x)? cos’x sin x dx
integrand sin”x cos“x in Example 2 J

and its indefinite integral (with X
C = 0). Which is which?

= | (1 — cos’x)*cos’x sin x dx

i = (1 — w*)u*(—du) = —J‘ (u? — 2u* + u®)du
u3 us u7
| =i e +C
i ( 3 5 d )
) = —1cos’x + $cos’x — Tcos’x + C -

FIGURE 1

In the preceding examples, an odd power of sine or cosine enabled us to separate a
single factor and convert the remaining even power. If the integrand contains even pow-
ers of both sine and cosine, this strategy fails. In this case, we can take advantage of the

following half-angle identities (see Equations 18b and 18a in Appendix D):

sinx =3(1 —cos2x) and  cos® = (1 + cos 2x)



EXAMPLE 3 Evaluate Io' sintx di:

SOLUTION If we write sin>x = 1 — cos’x, the integral is no simpler to evaluate. Using
the half-angle formula for sin“x, however, we have

J:sin’xdx=%f:(l — cos 2x) dx

Notice that we mentally made the substitution « = 2x when integrating cos 2x. Another
method for evaluating this integral was given in Exercise 7.1.53. O

Example 3 shows that the area of the
region shown in Figure 2 is /2.

1.5

FIGURE 2



EXAMPLE 4 Find j sin’x dx.

SOLUTION We could evaluate this integral using the reduction formula for | sin"x dx
(Equation 7.1.7) together with Example 3 (as in Exercise 7.1.53), but a better method is
to write sin’*x = (sin“x)* and use a half-angle formula:

I sin‘x dx = ’. (sin’x)*dx
= ‘ [3(1 — cos 20)]* dx
= :ng' [1 — 2cos 2x + cosz(2x)] dx

Since cos’(2x) occurs, we use the half-angle formula for cosine to write
cos’(2x) = :l)_'[l + cos(2 - x)] = :l?(l + cos 4x)

This gives

j. sin‘x dx = %j [I — 2cos 2x + %(l + cos 4x)] dx

K

|

— 2 cos 2x + 3 cos 4x) dx

Il
al—

H(3x — sin2x + §sindx) + C it

To summarize, we list guidelines to follow when evaluating integrals of the form
| sin"x cos"x dx, where m = 0 and n = 0 are integers.



Strategy for Evaluating | sinx cos"x dx

(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and use
cos’x = 1 — sin’x to express the remaining factors in terms of sine:

. 2 " . 2
[ sin™x cos* x dx = J sin™x (cos’x)*cos x dx

=J sin®x (1 — sin®x)*cos x dx

Then substitute u = sin x. See Example 1.

(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use
sin‘x = | — cos“x to express the remaining factors in terms of cosine:

j sin?**!x cos"x dx = ‘ (sin*x)*cos"x sin x dx
= J‘ (1 — cosx)*cos"x sin x dx

Then substitute u = cos x. See Example 2.
[Note that if the powers of both sine and cosine are odd, either (a) or (b) can be
used.]
(c) If the powers of both sine and cosine are even, use the half-angle identities

sin’x = %( 1 — cos 2x) cos’x = %(I + cos 2x)

See Examples 3 and 4.

It is sometimes helpful to use the identity

. 3
sSin X COs X = ¥ SIn 2x




B Integrals of Powers of Secant and Tangent

We use similar reasoning to evaluate integrals of the form | tan™x sec”"x dx. Because
(d/dx) tan x = sec’x, we can separate a sec’x factor and convert the remaining (even)
power of secant to an expression involving tangent using the identity sec’x = 1 + tan’x.
Or, since (d/dx) sec x = sec x tan x, we can separate a sec x tan x factor and convert the
remaining (even) power of tangent to secant.

EXAMPLE 5 Evaluate I tan®x sec’x dx.

SOLUTION If we separate one sec’x factor, we can express the remaining sec’x factor
in terms of tangent using the identity sec’x = 1 + tan’x. We can then evaluate the
integral by substituting « = tan x so that du = sec’x dx:

- ~

6 4 6 2 2
tan"x sec xdx = | tan"x sec x sec x dx

- -~

= | tan®x (1 + tan’x) sec’x dx

[ w51 + w?)du = [(u6 + u®)du

9
u' | u
=T+F+C=}tan7x+$tan°x+C =]



EXAMPLE 6 Find j tan’0 sec’6 df.

SOLUTION If we separate a sec’f factor, as in the preceding example, we are left with
a sec’ factor, which isn’t easily converted to tangent. However, if we separate a

sec  tan 6 factor, we can convert the remaining power of tangent to an expression
involving only secant using the identity tan“f = sec’) — 1. We can then evaluate the
integral by substituting u = sec 6, so du = sec f tan 6 df:

Itansﬂ sec’0 df = [ tan'0 sec®0 sec 6 tan 0 d6

.(seczo — 1)*sec® sec 6 tan 0 do
(- 1)%udu

= [ (" - 2u® + u®)du

ull 9 u"l

u
-lT—2T+7+C

—Tlrsecl'ﬂ—%sec90+'l;sec70+C E

The preceding examples demonstrate strategies for evaluating integrals of the form
| tan™x sec"x dx for two cases, which we summarize here.




Strategy for Evaluating ' tan™x sec”x dx

(a) If the power of secant is even (n = 2k, k = 2), save a factor of sec’x and use
sec’x = | + tan‘x to express the remaining factors in terms of tan x:

f tan™x sec’*x dx = J tan™x (sec’x)* ' sec’x dx

— J tan™x (1 + tan’x)*'sec’x dx

Then substitute u = tan x. See Example 5.

(b) If the power of tangent is odd (m = 2k + 1), save a factor of sec x tan x and
use tan‘x = sec’x — | to express the remaining factors in terms of sec x:

J. tan’**'x sec"x dx = J (tan’x)* sec™ 'x sec x tan x dx

= ’ (sec’x — 1)* sec™ 'x sec x tan x dx

Then substitute u = sec x. See Example 6.

For other cases, the guidelines are not as clear-cut. We may need to use identities,
integration by parts, and occasionally a little ingenuity. We will sometimes need to be
able to integrate tan x by using the formula established in (5.5.5):

Jtanxdx=ln|secx| +C




We will also need the indefinite integral of secant:

1] Isecxdx=ln|secx+tanx|+C

We could verify Formula | by differentiating the right side, or as follows. First we multi-

ply numerator and denominator by sec

jsecxdx=

o

X + tan x:

d sec x + tan x
sec x
sec x + tan x

+ sec’x + sec x tan x

sec x + tan x

If we substitute u = sec x + tan x, then du = (sec x tan x + sec’x) dx, so the integral
becomes [ (1/u) du = In |u| + C. Thus we have

[ sec xdx =

In|secx + tanx| + C

Formula 1was discovered by James
Gregory in 1668. (See his biography in
Section 3.4.) Gregory used this for-
mula to solve a problem in construct-

ing nautical

tables.




EXAMPLE 7 Find j e

SOLUTION Here only tan x occurs, so we use tan’x = sec’x — 1 to rewrite a tan’x
factor in terms of sec’x:

Itnn?’xdx=jtan'x mnzxdx=J.tanx(sec2x— 1) dx

=Itanx seczxdx—jvtanxdx
= ytan’x — In [sec x| + C
In the first integral we mentally substituted u = tan x so that du = sec’x dx. it
If an even power of tangent appears with an odd power of secant, it is helpful to

express the integrand completely in terms of sec x. Powers of sec x may require integra-
tion by parts, as shown in the following example.




EXAMPLE 8 Find [ sec’xdx.
SOLUTION Here we integrate by parts with

U = sec x dv = sec’x dx

du = sec x tan xdx v =tan x

Isec’xdx=secxtanx—jsecxtnnzxdx

=secxtanx—jsecx(sec2x— 1) dx

Using Formula 1 and solving for the required integral, we get

Isec’xdx=%(secxtanx+ln|secx+tanx|)+€ i

Integrals such as the one in the preceding example may seem very special but they

occur frequently in applications of integration, as we will see in Chapter 8.
Finally, integrals of the form

Icot"xcsc‘xdx
can be found in a similar way by using the identity 1 + cot‘x = csc’x.




B Using Product Identities

The following product identities are useful in evaluating certain trigonometric integrals.

|Z| To evaluate the integrals (a) j sin mx cos nx dx, (b) ( sin mx sin nx dx, or
(c) f cos mx cos nx dx, use the corresponding identity:

(a) sinA cos B = 1[sin(A — B) + sin(A + B)]
(b) sinA sin B = %[cos(A — B) — cos(A + B)]

(c) cos A cos B = %[cos(A — B) + cos(A + B)]

EXAMPLE 9 Evaluate j sin 4x cos Sx dx.

SOLUTION This integral could be evaluated using integration by parts, but it’s easier to
use the identity in Equation 2(a) as follows:

j sin 4x cos Sx dx = J 5[sin(—x) + sin 9x] dx

These product identities are

] . ;
discussed in Appendix D. = ’ZI (—sin x + sin 9x) dx

- %(cos X/~ %cos Ox) + C B



