
History of programming languages

    A programming language is a formal language designed for writing computer programs.
The programming language defines a set of lexical, syntactic and semantic rules that determine the appearance 
of the program and the actions that the performer (usually a computer) will perform under its control.
Initially, programming had an extremely primitive look and practically had no differences from the ordered binary 
code with a formalized approach. In fact, at the origin of the sphere, there were few differences between a 
programming language and computer code. There were no obvious and natural conveniences for the 
programmer, he had to have knowledge of numerical codes for each machine command. Even the allocation of 
memory for executing commands fell on the specialist.
To simplify the handling of computers, people began to actively develop languages, Assembler was one of the first. 
Symbolic names were used to display variables. Instead of numerical operations, it is enough for a person to know 
mnemonic names, their memorization was much easier. Already at this stage, programming languages have 
become more close to a human-understandable language
To simplify the handling of computers, people began to actively develop languages, Assembler was one of the first. 
Symbolic names were used to display variables. Instead of numerical operations, it is enough for a person to know 
mnemonic names, their memorization was much easier. Already at this stage, programming languages have 
become more close to a human-understandable language



first-generation programming language, 1GL

► The first generation includes machine languages — programming 
languages at the level of processor commands of a specific machine. No 
translator was used for programming, program commands were entered 
directly in the machine code by switches on the front panel of the 
machine. Such languages were good for a detailed understanding of the 
functioning of a particular machine, but difficult to study and solve applied 
problems. (Fortran)



second-generation programming language, 2GL

► Second-generation languages (2 GL) were created in order to facilitate 
the hard work of programming, moving in language expressions from 
low-level machine concepts closer to how a programmer usually thinks. 
These languages appeared in the 1950s, in particular, languages such as 
Fortran and Algol. The most important problem faced by developers of 
second-generation languages was the task of convincing customers that 
the code created by the compiler performs well enough to justify 
abandoning assembly programming. Skepticism about the possibility of 
creating effective programs using automatic compilers was quite 
common, so the developers of such systems had to demonstrate that they 
could indeed generate almost as effective code as with manual coding, 
and for almost any initial task. (Assembler)



third-generation programming language, 3GL

► The third generation (3GL) originally meant all languages at a higher level than 
assembler. The main distinguishing feature of third-generation languages has 
become hardware independence, that is, the expression of the algorithm in a 
form that does not depend on the specific characteristics of the machine on 
which it will be executed. Code written in a thirdgeneration language is 
translated either directly into machine commands or into assembler code before 
execution and then assembled. When compiling, unlike previous generations, 
there is no longer a one-to-one correspondence between the program 
instructions and the generated code.

► Program interpretation has become widely used — at the same time, program 
instructions are not converted into machine code, but are executed directly one 
after the other. Independence from hardware is achieved by using an 
interpreter compiled for a specific hardware platform. (Fortran 2, Algol 60, Cobol, 
Pascal, Basic)


