КАТИОНЫ ВТОРОЙ АНАЛИТИЧЕСКОЙ ГРУППЫ

<u>КАТИОНЫ ВТОРОЙ</u> АНАЛИТИЧЕСКОЙ ГРУППЫ

- **общая характеристика.**
- \Box Ко второй аналитической группе относятся $\mathbf{Ag^+, Hg_2^{2+}, Pb^{2+}}$.
- Для отделения этих катионов пользуются групповым реактивом, которым является 2H раствор соляной кислоты, который добавляют в избытке.
- \Box Катионы $\mathbf{Ag^+, Pb^{2+}}$, $\mathbf{Hg_2^{2+}}$ бесцветные в своих растворах.

ПРИМЕНЕНИЕ

- Растворы серебра применяют в глазной практике, как вяжущее и прижигающее средство.
- Применяются коллоидные растворы серебра:
 колларгол и протаргол, как противовоспалительные и антисептические средства.
- Соли свинца (ацетат свинца) вяжущее средство, наружно для примочек, компрессов, при воспалительных заболеваниях кожи и слизистых оболочек.
- Оксид свинца применяют в виде свинцового пластыря: противовоспалительное, дезинфицирующее средство.

Действие группового реактива (HCl).

1. $Ag^++Cl^-\rightarrow AgCl\downarrow$

белый творожистый осадок растворим в растворе аммиака)

$AgCl^{+}2NH_{4}OH \rightarrow [Ag(NH_{3})_{2}]Cl+2H_{2}O$

- (если на полученный комплекс подействовать HNO₃, то вновь выпадает творожистый осадок)
- $\ \ \, [Ag(NH_3)_2]Cl+2HNO_3 \rightarrow AgCl\downarrow +2NH_4NO_3$

$$2.Pb^{2+}+2Cl^{-} → PbCl2↓$$

□ (белый хлопьевидный осадок, растворим в горячей воде, а при охлаждении выпадают серебристые чешуйки).

$$3.Hg_{2}^{2+}+Cl^{-} \rightarrow Hg_{2}Cl_{2}\downarrow$$

$$Hg_{2}Cl_{2}+2NH_{4}OH \rightarrow$$

$$\rightarrow [HgNH_{2}]Cl+2H_{2}O+NH_{4}Cl+Hg \downarrow$$

□ (белый осадок, при действии NH₄OH выпадает черный осадок).

Катион	Реактив	Эффект
\mathbf{Ag}^{+}	KI	Желтый творожистый
		осадок, не растворим в
		NH₄OH, но
		растворяется в $Na_2S_2O_3$

$$AgNO_3+KI \rightarrow AgI\downarrow+KNO_3$$

$$AgI+2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2]+NaI$$

Катион	Реактив	Эффект
\mathbf{Ag}^{+}	K ₂ CrO ₄	Кирпично-красный
		осадок растворим в
		HNO ₃ , NH ₄ OH,
		труднорастворим в
		уксусной кислоте

$$2AgNO_3 + K_2CrO_4 \rightarrow Ag_2CrO_4 \downarrow + 2KNO_3$$

Катион	Реактив	Эффект
\mathbf{Ag}^{+}	NaOH	Черный осадок
		растворим в HNO ₃ при нагревании

$$2AgNO_3+2NaOH \rightarrow \rightarrow Ag_2O\downarrow + H_2O+2NaNO_3$$

Катион	Реактив	Эффект
\mathbf{Ag}^{+}	Na ₂ S ₂ O ₃	Белый осадок (растворим в
		избытке реактива) быстро
		переходящий в желтый,
		черный осадок

$$2AgNO_3+Na_2S_2O_3 \rightarrow Ag_2S_2O_3 \downarrow +2NaNO_3$$

$$Ag_2S_2O_3 \rightarrow Ag_2SO_3 \downarrow + S \downarrow$$

$$Ag_2SO_3+S+H_2O\rightarrow Ag_2S\downarrow +H_2SO_4$$

$$Ag_2S_2O_3 + 3Na_2S_2O_3$$
 (изб) $\rightarrow 2Na_3[Ag(S_2O_3)_2]$

Катион	Реактив	Эффект
\mathbf{Ag}^{+}	Реакция серебряного	
	зеркала (реакция	
	среды —	
	слабощелочная)	

$$AgNO_3+2NH_4OH \rightarrow [Ag(NH_3)_2]NO_3+2H_2O$$

$$2[Ag(NH3)2]NO3+H2CO+H2O \rightarrow \rightarrow 2Ag\downarrow+NH3\uparrow+HCOONH4+NH4NO3$$

Катион	Реактив	Эффект
Pb ²⁺	КІ (реакция среды	Желтый осадок
	– слабокислая)	(+уксусная кислота + вода,
		нагреть до растворения
		осадка, при резком
		охлаждении раствора под
		струей холодной воды
		выпадает осадок в виде
		золотых чешуек)

$$Pb(NO_3)_2 + 2KI \rightarrow PbI_2 \downarrow + 2KNO_3$$

Катион	Реактив	Эффект
Pb ²⁺	K ₂ CrO ₄	Желтый осадок
		малорастворим в HNO ₃ и
		уксусной кислоте, но
		растворяется в щелочах

$$Pb(NO_3)_2 + K_2CrO_4 \rightarrow PbCrO_4 \downarrow + 2KNO_3$$

Катион	Реактив	Эффект
Pb ²⁺	H_2SO_4	Белый осадок, растворим
		при нагревании в
		растворе щелочей

$$Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2HNO_3$$

$$PbSO_4+4NaOH \rightarrow$$

$$\rightarrow Na_2PbO_2+H_2SO_4+2H_2O$$

Катион	Реактив	Эффект
Pb ²⁺	NaOH	Белый осадок, растворим
		в кислотах и щелочах

Уравнение реакции

 $Pb(NO_3)_2 + 2NaOH \rightarrow Pb(OH)_2 \downarrow + 2NaNO_3$

Катион	Реактив	Эффект
Pb ²⁺	Na ₂ S	Черный осадок,
		растворим в НОО3

Уравнение реакции

 $Pb(CH_3COO)_2 + Na_2S \rightarrow PbS \downarrow + 2CH_3COONa$

$$3PbS+8HNO_{3} \rightarrow 3Pb(NO_{3})_{2}+3S\downarrow+2NO\uparrow+4H_{2}O$$

Катион	Реактив	Эффект
Pb ²⁺	Раствор	Слой хлороформа
	дитизона в	окрашивается в красный
	хлороформе	цвет

Катион	Реактив	Эффект
Hg ²⁺ ₂	KI	Грязно-зеленый осадок, растворим в избытке реактива

$$Hg_2Cl_2+2KI \rightarrow Hg_2I_2\downarrow+2KCl$$

$$Hg_2I_2+2KCl(изб) \rightarrow K_2[HgI_4]+Hg\downarrow$$